
Hierarchical Dynamic Neighborhood Based Particle
Swarm Optimization for Global Optimization

Pradipta Ghosh1, Hamim Zafar1, Swagatam Das1 and Ajith Abraham 2, 3

1Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032, India

2Faculty of Computer Science and Electrical Engineering, VSB – Technical University of Ostrava, Czech Republic
3Machine Intelligence Research Labs (MIR Labs), Seattle, WA, USA

ajith.abraham@ieee.org

Abstract— Particle Swarm Optimization (PSO) is arguably one of
the most popular nature-inspired algorithms for real parameter
optimization at present. In this article, we introduce a new
variant of PSO referred to as Hierarchical D-LPSO (Dynamic
Local Neighborhood based Particle Swarm Optimization). In this
new variant of PSO the particles are arranged following a
dynamic hierarchy. Within each hierarchy the particles search
for better solution using dynamically varying sub-swarms i.e.
these sub-swarms are regrouped frequently and information is
exchanged among them. Whether a particle will move up or
down the hierarchy depends on the quality of its so-far best-
found result. The swarm is largely influenced by the good
particles that move up in the hierarchy. The performance of
Hierarchical D-LPSO is tested on the set of 25 numerical
benchmark functions taken from the competition and special
session on real parameter optimization held under IEEE
Congress on Evolutionary Computation (CEC) 2005. The results
have been compared to those obtained with a few best-known
variants of PSO as well as a few significant existing evolutionary
algorithms.

Keywords - PSO, local PSO,hierarchy, D-LPSO, Hierarchical D-
LPSO

I. INTRODUCTION

The concept of particle swarms originated from the simulation
of the social behavior commonly observed in animal kingdom
and evolved into a very simple but efficient technique for
global numerical optimization in recent past. The Particle
Swarm Optimization (PSO) [1, 2] as it is called now, does not
require any gradient information of the function to be
optimized, uses only primitive mathematical operators, and is
conceptually very simple. Since its inception in 1995, PSO has
attracted a great deal of attention of the researchers all over the
globe resulting into several variants of the basic algorithm,
theoretical and empirical investigations of the dynamics of the
particles, parameter selection and control, and applications of
the algorithm to a wide spectrum of real world problems from
diverse fields of science and engineering. For Evolutionary
Algorithms (EAs) search for an optimum is an iterative
process that depends on some random decisions. For a
comprehensive knowledge on the foundations, perspectives,
applications of PSO see [1!2] [4!6]. The effectiveness of PSO
is mainly attributed to the efficient communication of
information among the search agents. PSO has already been

applied to numerous benchmark as well as real world
optimization problems successfully.

PSO exploits the dynamics of a population of trial
solutions or search-agents that collaborate for finding better
solutions. PSO combines cognition only model that values
only the self-experience and social only model that takes into
account the experience of neighbors. The algorithm uses a set
of particles astrogating over a search space and moving
towards a promising position to locate a global optimum. Each
particle stands for a potential solution to an optimization
problem. Initially the particles are distributed randomly over
the search space each one endowed with a random velocity,
and the goal is to converge to the global optimum of a
function. During their journey with discrete time iterations, the
velocity of each particle in the next iteration is determined by
the best position found by the particles of the swarm (gbest as
the social component), the best personal position of the
particle (pbest as the cognitive component), and its current
velocity (the memory term).

Being a stochastic search process PSO is not free
from false and/or premature convergence, especially over
multimodal fitness landscapes. As there is a direct link of the
information flow between particles and gbest, multifariousness
is lost. As a result probability of being trapped in local optima
increases that result in premature convergence. Various
modifications and PSO variants have been proposed to
eradicate this problem. The modifications can be regarded as
algorithmic components that provide an improved
performance. These algorithmic components may be
integrated in the particles’ velocity update rule (1) or as stand-
alone algorithms that are used as components of hybrid PSO
algorithms.

In this article, we propose a new variant of PSO
called Hierarchical D-LPSO. In Hierarchical D-LPSO, a
particle is influenced by its own so far best position and by the
best position of the particle that is directly above it in the
hierarchy. All particles are arranged in a tree that forms the
hierarchy so that each node of the tree contains exactly one
particle. Particles can move up and down the hierarchy
depending on the solution it has obtained. Within each level of
hierarchy the particles search for better solution using a
dynamically varying neighborhood. Each hierarchy involves a
no of sub-swarms of particles that search for better solution
and information is exchanged between the sub-swarms

978-1-4244-7833-0/11/$26.00 ©2011 IEEE

resulting in increased diversity. Performance of the proposed
PSO is compared with other those of Unified PSO (UPSO)
[4], Comprehensive Learning PSO (CLPSO) [5], wFIPS [6],
Dynamic Multi-Swarm PSO (DMS-PSO) [7], Cooperative
PSO (CPSO) [5], Differential Evolution (DE) [8] and one of
its significant adaptive variants [9].

The rest of the paper is arranged in the following way:
Section II contains the an overview of PSO algorithm, Section
III gives a brief overview of L-PSO, Section IV describes
Hierarchical PSO, Section V presents D-LPSO algorithm and
Section VI describes our Novel method abbreviated as
Hierarchical D-LPSO, Section VII contains a comparative
study of the algorithms over CEC (Congress on Evolutionary
Computation) 2005 benchmark problems [10] and Section
VIII concludes this paper..

II. AN OVERVIEW OF PSO ALGORITHM

The classical PSO starts with the random initialization of a
population of candidate solutions (particles) over the fitness
landscape. However, unlike other evolutionary computing
techniques, PSO uses no direct recombination of genetic
material between individuals during the search. Rather it
works depending on the social behavior of the particles in the
swarm. Therefore, it finds the global best solution by simply
adjusting the trajectory of each individual towards its own best
position and toward the best particle of the entire swarm at
each time-step (generation). In a D-dimensional search space,
the position vector of the i-th particle is given by !
X i = (xi

1,xi
2 ,",xi

D) and velocity of the i-th particle is given

by
!
Vi = (vi

1,vi
2 ,!,vi

D) . Positions and velocities are adjusted

and the objective function to be optimized f (
!
Xi) is evaluated

with the new coordinates at each time-step. The velocity and
position update equations for the d-th dimension of the i-th
particle in the swarm may be represented as:
 vi

d =! *vi
d +c1 * rand 1i

d *(pbesti
d ! xi

d)

 +c2 * rand 2i
d *(gbest d ! xi

d) ,

 xi
d =xi

d !1 + vi
d , (1)

where 1c and 2c
are the acceleration constants, 1c controls

the effect of the personal best position, 2c determines the
effect of the best position found so far by any of the particles,
rand1i

d and rand2i
d

are two uniformly distributed random

numbers in the range [0, 1]. ! is the inertia weight that
balances between the global and local search abilities and
takes care of the influence of the previous velocity vector.
pbesti = (pbesti

1, pbesti
2,!, pbesti

D) is the best previous position
yielding the best fitness value pbest

i
for the thi

particle and

gbest = (gbest1,gbest2,!,gbestD) is the best position discovered
by the entire swarm.

III. LOCAL NEIGHBORHOOD BASED PSO

The two main variants are global_best (or gbest) PSO and
local_best (lbest) PSO. Some other variants limit the velocity
of a particle by a maximal value maxV , some variant linearly
varies! . In lbest PSO, each particle’s velocity is modified
according to its personal best and the best performance
achieved so far within its neighborhood instead of learning
from the personal best and the best position achieved so far by
the whole population in the global version. The velocity
updating equation becomes:

vi
d =! *vi

d +c1 * rand 1i
d *(pbesti

d ! xi
d)

+c2 * rand 2i
d *(lbesti

d ! xi
d) (2)

where),,,(21 D
iiii lbestlbestlbestlbest != is the best position

achieved within its neighborhood. To increase the diversity
among the particles of a swarm various mechanisms has been
designed. The topology of the neighborhood plays a
substantial role in PSO, and different neighborhood topologies
have been investigated for PSO. In the lbest model of PSO, the
neighborhood is defined by a ring topology based on the
particles’ index. For the improvement of this lbest model of
PSO, different neighborhood structures are proposed and
discussed in literature. There are some variants, which use
multi-swarm [7], subpopulation [7]. Sub-groups may be
treated as special neighborhood structures. In the existing local
versions of PSO with different neighborhood structures and
the multi-swarm PSOs, the swarms are predefined or
dynamically adjusted according to the distance. The dynamic
multi-swarm optimizer uses a dynamic or randomly assigned
topology. We use the dynamic topology i.e. dynamically
varying sub populations along with the hierarchical version of
the PSO and obtain an improved variant of PSO which shows
good performance on the 30-D test functions obtained from
the competition and special session on real-parameter
optimization held under CEC 2005.

IV. A BRIEF OVERVIEW OF HIERARCHICAL PSO
In the hierarchical version of PSO the particles are arranged in
a hierarchy and it defines the neighborhood structure. Each
particle is neighbored to itself and also its parent in the
hierarchy. The regular treelike hierarchies are followed. The
hierarchy is defined by the height, the branching degree [11],
i.e., the maximum number of children of the inner nodes, and
the total number of nodes of the corresponding tree. In this
hierarchy all inner nodes have the same number of children,
but the inner nodes on the deepest level might have a smaller
number of children. As a result the maximum difference
between the numbers of children of inner nodes on the deepest
level is at most one. The best particles of the swarm become
highly influential by the upward and downward movement of
the particles in the hierarchy. In every iteration, the new
positions of the particles are determined between the
evaluation of the objective function and velocity update. The
best solution of thj particle in a node of the tree is compared

to the best solution obtained by the particles in the child
nodes. This is done for every particle in that node. If best
solution obtained by any particle (say thi particle) in the child
node is better than that of thj particle then the particles i and j
swap their places. These comparisons start from the top of the
hierarchy and then proceed in a breadth-first manner down the
tree. The particle having global best position of the hierarchy
moves up one level of the hierarchy at every iteration. The
velocity of a particle is modulated by its own so far best
position and by the best position of the individual that is
directly above in the hierarchy.

In case of H-PSO [11] neighborhood of a particle
changes constantly depending on the fitness development of
the individuals. The changing arrangement of the particles can
help preserving diversity in the search. The arrangement of the
particles leads to a different influence for the particles at
different positions. The particle with the currently best found
solution can (indirectly) influence all the other particles after it
has reached the top of the hierarchy.

The structure of the hierarchy, the branching degree d
influences the optimization behavior of H-PSO. For example,
if branching degree is higher, then performance might be
better initially, on the other hand due to a smaller value of d
performance of finding best solution may be worse in the
beginning of the optimization process but it might improve the
objective function value further in the end of the optimization
process. For this reason the branching degree is changed
dynamically. When the branching degree is decreased from d
to d-1, the hierarchy is traversed starting at the root node. This
is done so that always one of the direct sub trees below the
considered node is removed, if the number of children exceeds
the new required branching degree. The removal of sub tree is
based on the quality of the particles in the topmost nodes of all
sub trees of the considered nodes, i.e., all children of the
considered node. This procedure is repeated for the entire tree.
After this removal of sub tree the remaining tree has branching
degree d-1 and fewer nodes than before. The removed nodes
are then evenly inserted at the bottom of the hierarchy. The
removed nodes are appended one by one so that the number of
children of all nodes on the second last level differs by at most
one. If all of these nodes have d-1 children, a new level is
added to the hierarchy and the procedure is continued until all
removed nodes are reinserted. The branching degree reduction
is done in every adaptf th iteration, this adaptf is called decrease

frequency. Branching degree is decreased by adaptk known as

decrease step size. For 1>adaptk the reduction procedure is
applied consecutively (i.e., the branching degree is always
reduced in steps of 1) until the hierarchy has the required
branching degree. This is done until a certain minimum
branching degree is reached. To choose which sub tree are to
be removed two strategies are used, removing the sub tree
with the worst root node or the one with the best root node.

V. PROPOSED D-LPSO ALGORITHM
The Dynamic Local Neighborhood based Particle Swarm
Optimization (D-LPSO) is a variant of PSO constructed based

on the local version of PSO employing a new neighborhood
topology. In case of PSO it has been found that satisfactory
results can be obtained using smaller population size. PSO
with smaller neighborhoods has better performance on
complex problems also. In case of D-LPSO smaller
neighborhoods are used. As a result the convergence velocity
of the population decreases, diversity increases and better
solutions are achieved for multi-modal problems.

In order to slow down the population’s convergence
velocity and increase diversity and achieve better results on
multimodal problems, in the D-LPSO, small neighborhoods
are used. The population is divided into small sized swarms.
Each sub-swarm uses its own members to search for better
area in the search space. Since the small sized swarms are
searching using their own best historical information, they are
easy to converge to a local optimum because of PSO’s
convergence property. In order to avoid it we must allow
information exchange among the swarms. And in the
information exchange schedule, we want to keep more
information including the good ones and the not so good ones
to add the varieties of the particles and achieve larger
diversity. So a randomized regrouping schedule is introduced
to make the particles have a dynamic changing neighborhood
structures. Each sub-swarm containing at most three particles
search for better location and they may converge to near a
local optimum. After regrouping, the particles previously
belonging to a common sub-swarm now belong to different
sub-swarms and get the opportunity to modify their velocity
and position learning from the new swarm members. During
regrouping the particles are distributed among different
swarms randomly. In every generation, the population is
regrouped randomly and starts searching using a new
configuration of small swarms. In this way, the information
obtained by each swarm is exchanged among the swarms as a
particle belongs to different swarms during the search process
and it carries the information obtained in the previous swarm
and uses this information to influence other particles’
movement in the new swarm. With the randomly regrouping
schedule, particles from different swarms are grouped in a
new configuration so that each small swarm’s search space is
enlarged and better solutions are possible to be found by the
new small swarms.

VI. HIERARCHICAL D-PSO ALGORITHM
In this algorithm Hierarchical PSO is combined with D-LPSO.
The steps of the proposed PSO algorithm is as follows:

Step1. The Initialized population is divided into stages. First
stage contains 1 particle; next stage contains maximum n
elements (Initially n = 2). N-th stage can contain maximum nN
particles.
Step2. Each particle is assigned randomly a parent from the
previous stage except the particle on 1st stage
Step3. Evaluate each particles Fitness
Step4. Now D-LPSO is applied along each stage except 1st
stage.

Step5. Now each particle compares its fitness with its assigned
parent. If its position is better than its parent’s position, they
are swapped.
Step6. Step2 to Step5 continues until next 1/5th of the total FEs
is completed. Now n = n+1, and Step1 takes place again.
Step7. When maximum no of FEs is reached all the processes
are stopped and the result is shown.
 In the velocity update equation we have used a
constriction factor to avoid the unlimited growth of the
particles’ velocity. This was proposed by Clerc and Kennedy
[12]. Equation 2 becomes
Vi

d = ! *(" *Vi
d + c1 * rand1i

d *(pbesti
d ! Xi

d)
+c2 * rand2i

d *(lbesti
d ! Xi

d)) (3)
! is the constriction factor given by

! = 2 / 2! c! c2 ! 4c (4)

c = cii!

This procedure is shown in Figure 1.

Figure 1: Hierarchical D-LPSO’s Search Process

The pseudo codes of Step1 to Step 5 are given below. Step 6
and Step 7 can be easily coded.
__

Step1

N=total no of particles.
FEs= No of FEs covered;

Max_FEs=Max No of FEs
Count =Max no of particles in second stage.
Icount= Max no of particles in any stage Stage(1,1)= Any
particle from the population.
Stagecount=2;
Icount=Count;
While 1

For i=1: Icount
Stage (Stagecount, i) =any particle from the
rest of the population
If All the particles Covered

Break;
End

End
If all the particles are covered

Break;
End
Icount=Icount*Count;

 Stagecount=Stagecount+1;
End
__

Step2
 (Stage (1,1))= Stage (1,1);
Icount=Count;
For j=1: Stagecount

For i=1: Icount
Parent (Stage (Stagecount, i)) =any particle
from the previous stage.

End
Icount=Icount*Count;

End
__

Step3
For i=1:N
 Evaluate Each particle’s Fitness
End
__

Step4
For j=1: Stagecount

Apply D-LPSO;
End
__

Step5
For j=1: Stagecount

For i=1: Icount
If Fitness (Parent (Stage (Stagecount, i)))
<Fitness (Stage (Stagecount, i))

Swap the particles.
End

End
Icount=Icount*Count;

End

In the above algorithm we are repeating steps 2 to 5 for 1/5th
of the total FEs and after that we start the process again. It has
been found empirically that good results are obtained by

restarting the process after 1/5th of the total FEs. Steps 2 to 5
yield sufficiently good result within this no of FEs and more
no. of FEs are not required. When applying D-LPSO in step 4

After a few iterations

Position Updation

This processes i.e. Grouping, position vector updating, and
position interchange in the hierarchy; again Rearrangement

goes on until Max_FEs is reached.

Grouping

Rearrangement

we create sub-swarms containing at most 3 particles within
each level of hierarchy, the no of sub-swarms in a level of
hierarchy depends on the no of particles in that particular
level.

VII. EXPERIMENTAL RESULTS

A. Benchmark Functions Used:
For the evaluation of the performance of the new variant of
PSO a test-bed of twenty-five well - known boundary-
constrained benchmark functions has been used. These
functions constituted the benchmark of CEC-2005 competition
on single objective optimization. These functions can be
divided into two groups as follows

! Unimodal Functions: f1 to f5
! Multimodal Functions: f6 to f25

Among these functions seven are simple test functions, two
others are expanded functions (Whitley et al. 1996).The
remaining eleven functions are hybrid composition functions.
Only f1 and f9 are separable. These functions were
designed to test an optimizer’s ability to locate a
global optimum under a variety of circumstances:

! Function landscape is highly conditioned
! Function landscape is translated
! Function landscape is rotated
! Optimum lies in a narrow basin
! Optimum lies on a bound
! Optimum lies beyond the initial bounds
! Function is not continuous everywhere
! Gaussian N(0,1) noise is to the function evaluation
! Bias is added to the function evaluation

The detailed information about the test functions is
available on–line at:
http://www.ntu.edu.sg/home/EPNSugan

B. Algorithms Compared:
The results of Hierarchical D-LPSO on the above test bed
have been compared to the following algorithms:

• DE/rand/1/bin [8]
• jDE with NP=100,"1="2=0.1 [9]

• CLPSO [5]
• UPSO [4]
• DMS-PSO [7]
• wFIPS [6]
• CPSO [5]

Among the above seven algorithms the first one is a classical
DE, the next algorithm is a DE variants, the next five
algorithms are various PSO variants. The results of the
compared algorithms have been obtained from 25 independent
runs on each of twenty-five numerical benchmarks.

C. Simulation Strategies:
Functions f1 to f25 were tested in 30-dimensions (30D). The
following specifications are used. Each run for all the
algorithms were terminated when the number of Function
Evaluations (FEs) exceed 3e+05. Parametric set-up for all the
benchmark problems considered here: c1=2.05, c2=2.05,
w=0.793, ! =0.729. Our algorithm is tested on a Pentium core
2 duo machine with 1 GB RAM and 2.00 GHz speed.

D. Results on Benchmark Functions:
The results of Hierarchical D-LPSO, DE/rand/1/bin, jDE,
CLPSO, UPSO, DMSPSO, wFIPS, and CPSO have been
shown below in Tables 1 to 5. The results are presented in
terms of mean and standard deviations obtained from 25
independent runs on each of twenty-five numerical
benchmarks for 30 Dimensions. In order to determine the
statistical significance of the advantage of the hierarchical D-
LPSO over other algorithms, a non-parametric statistical test,
called Wilcoxon’s ranksum test [13, 14] is applied on the
mean error found at the 5% significance level and the results
are shown in Table 6. The numerical values 1, 0, -1 represent
that other methods are statistically superior to, equal to or
inferior to the proposed algorithm.

Table 1: Mean and std.(in parentheses) of error values for functions 1-5

Algorithms

f1 f2 f3 f4 f5
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

DE/rand/1/bin

1.3554e-29
(1.3893e-15)

5.4912e-08
(1.2449e-07)

2.8911e+05
(1.9321e+05)

5.0455e-01
(8.5812e-01)

2.3500e+02
(1.8312e+02)

jDE 1.0000e-29
(5.3453e-16)

7.5064e-06
(7.3804e-06)

2.2663e+05
(1.6085e+05)

2.7305e-01
(1.5490e-01)

1.1108e+03
(3.7238e+02)

UPSO 1.5773e-28
(1.2721e-17)

2.4150e+01
(9.0551e-01)

3.4662e+03
(5.3453e-16)

2.1533e+03
(5.1222e+00)

1.4190e+03
(1.2135e+01)

CLPSO 6.9032e-26
(4.4361e-14)

3.9386e+05
(6.8032e+00)

7.4046e+07
(2.5412e+05)

1.4314e+04
(1.0954e+01)

1.2266e+04
(8.2250e+03)

DMS-PSO 3.3149e-29
(2.431e-10)

0.8968e+00
(7.9441e+00)

7.9812e+06
(2.0285e+02)

7.9277e+02
(1.1354e+01)

7.5656e+03
(1.3555e+01)

wFIPS 2.3896e-015
(1.4035e-07)

2.8500e+03
(4.6839e+02)

2.4097e+03
(7.8151e+05)

1.4268e+03
(4.1457e+01)

1.8613e+03
(3.8819e+03)

CPSO 2.8547e-09
(1.0947e-05)

1.1777e+03
(3.7518e+01)

1.4116e+03
(5.1021e+04)

3.2427e+04
(2.1253e+01)

1.2955e+04
(1.7723e+03)

Hierarchical D-
LPSO

1.0000e-30
(9.3837e-20)

1.3939e-22
(7.8076e-03)

1.0226e+03
(2.3400e+01)

8.5560e+01
(2.5674e+01)

3.3301e+03
(9.8939e+00)

Table 2: Mean and std.(in parentheses) of error values for Functions 6-10

Table 3: Mean and std.(in parentheses) of error values for Functions 11-15

Table 4: Mean and std.(in parentheses) of error values for Functions 16-20

Algorithms

f6 f7 f8 f9 f10
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

DE/rand/1/bin

3.7711e+00
(2.7176e+00)

9.6555e-01
(9.1416e-02)

2.0908e+01
(6.2577e-02)

5.6843e-14
(1.0000e-15)

6.1665e+01
(4.5634e+01)

jDE 1.1196e+01
(1.3987e+00)

9.8597e-03
(3.4824e-03)

2.0955e+01
(2.5067e-02)

1.2737e-15
(1.0000e-15)

5.2547e+01
(4.4660e+00)

UPSO 1.4676e+01
(6.9411e+01)

7.4781e-03
(5.1123e-01)

2.1002e+01
(5.1451e-02)

8.0541e+01
(1.1453e+01)

1.1709e+02
(2.2452e+01)

CLPSO 2.7570e+01
(3.0942e+01)

1.4496e-01
(1.6216e-01)

2.1431e+01
(3.1455e-01)

1.4223e+01
(1.9204e+01)

1.7357e+02
(5.7628e+01)

DMS-PSO 5.0691e+01
(4.2186e+01)

0.0148e+00
(8.1534e-01)

2.1009e+01
(4.7572e-01)

2.1889e+01
(1.6371e+01)

1.6018e+02
(2.6161e+01)

wFIPS 2.7808e+01
(7.4091e+00)

0.0224e+00
(5.4664e-01)

2.0893e+01
(7.8543e-01)

8.3434e+01
(1.9281e+01)

1.9873e+02
(5.4815e+01)

CPSO 1.2233e+02
(2.5279e+01)

4.6963e-01
(1.9951e+00)

2.0431e+01
(9.1522e-01)

3.9923e-09
(1.8421e+01)

4.7458e+02
(3.0921e+01)

Hierarchical D-
LPSO

5.7921e-01
(2.0167e+00)

3.1086e-15
(9.7520e-04)

2.0000e+01
(5.1185e-04)

6.9093e+00
(2.9427e+00)

3.2758e+01
(2.9123e+00)

Algorithms f11 f12 f13 f14 f15
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

DE/rand/1/bin

3.2611e+01
(1.0990e+01)

8.4356e+03
(6.2276e+03)

4.5166e+00
(2.2655e+00)

1.3378e+01
(3.4756e-01)

4.8470e+02
(2.1460e+01)

jDE 3.1370e+01
(2.3952e+00)

3.8376e+04
(6.5374e+03)

1.6568e+00
(9.0313e-01)

1.3545e+01
(9.9402e-02)

2.9642e+02
(1.8711e+01)

UPSO 2.9326e+01
(1.3453e+00)

2.6078e+04
(1.9759e+03)

8.3413e+00
(5.9199e+00)

1.3823e+02
(1.2345e+00)

4.0485e+02
(3.9841e+01)

CLPSO 2.7570e+01
(8.7291e+00)

1.4496e+03
(1.2144e+02)

1.8319e+00
(3.5519e+00)

1.4223e+01
(1.8566e-01)

2.7357e+02
(1.8805e+01)

DMS-PSO 3.763e+01
(3.9221e+00)

1.8494e+05
(2.3081e+03)

3.9243e+00
(1.0025e+00)

1.3498e+01
(2.3052e+00)

2.4561e+02
(2.1109e+01)

wFIPS 3.9810e+01
(7.2393e+00)

9.9352e+05
(8.7152e+02)

1.4137e+01
(1.0723e+01)

1.4137e+01
(5.6714e+00)

3.2362e+02
(7.3117e+01)

CPSO 4.0380e+01
(5.9065e+00)

3.1445e+03
(8.9612e+02)

1.6102e+00
(1.0042e+00)

1.3852e+01
(1.9023e-01)

7.3132e+02
(2.7126e+01)

Hierarchical D-
LPSO

2.4588e+01
(7.7643e-01)

2.2635e+02
(1.0456e+02)

1.4646e+00
(4.8823e-01)

1.1955e+01
(1.9311e-01)

2.1324e+02
(1.2044e+01)

Algorithms f16 f17 f18 f19 f20

Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)
DE/rand/1/bin

2.8231e+02

(1.1811e+01)
3.0931e+02

(1.5800e+01)
9.1311e+02
(8.4333e-01)

9.1394e+02
(1.2112e+00)

9.1345e+02
(1.1643e+00)

jDE 1.2854e+02
(4.0730e+01)

1.6189e+02
(4.7251e+01)

8.6111e+02
(1.8705e+00)

8.4801e+02
(3.1790e+00)

8.5466e+02
(9.5496e-01)

UPSO 1.9239e+02
(1.3453e+01)

2.3493e+02
(1.5553e+01)

8.5899e+02
(8.5349e+00)

8.3672e+02
(9.9335e+00)

8.3458e+02
(5.3453e+00)

CLPSO 1.6647e+02
(1.1472e+02)

1.6647e+02
(1.8328e+01)

9.1426e+02
(4.3234e+00)

9.1190e+02
(2.3876e+00)

9.1460e+02
(2.8968e+00)

DMS-PSO 1.5063e+02
(4.1217e+01)

1.2051e+02
(1.7493e+01)

8.4715e+02
(7.1184e+00)

8.4156e+02
(1.2033e+01)

8.3903e+02
(6.0242e+00)

wFIPS 2.5374e+02
(2.6231e+01)

2.4396e+02
(3.7383e+01)

8.5259e+02
(1.9271e+01)

8.5058e+02
(2.8134e+01)

8.4261e+02
(1.5721e+01)

CPSO 2.7883e+02
(7.0912e+01)

4.4672e+02
(3.8973e+01)

9.1759e+02
(1.3845e+01)

9.5649e+02
(3.3420e+00)

9.6774e+02
(1.5644e+00)

Hierarchical
D-LPSO

8.9347e+01
(1.4668e+00)

8.4512e+01
(9.8907e+00)

8.2927e+02
(8.7532e+00)

8.3044e+02
(1.2234e+00)

8.3074e+02
(4.6854e-01)

Table 5: Mean and std.(in parentheses) of error values for Function s21-25

Table 6: Comparisons Between Hierarchical d-lpso And Other Algorithms on the basis of WilCoxon’s Ranksum Tests

Algorithms f21 f22 f23 f24 f25

Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)
DE/rand/1/bin

5.8188e+02

(2.6267e+01)
9.6457e+02

(1.1433e+01)
6.2123e+02

(3.0612e+01)
3.1411e+002
(3.2262e+01)

7.8612e+02
(2.1746e+01)

jDE 8.6002e+02
(1.1361e+00)

5.0340e+02
(2.9115e+00)

6.1835e+02
(4.5481e+00)

2.1081e+02
(2.8842e+00)

2.1153e+02
(1.3637e+00)

UPSO 8.7297e+02
(5.2457e+01)

7.5716e+02
(1.6531e+01)

8.8250e+02
(6.7905e+01)

2.2900e+02
(3.5557e+01)

2.2523e+02
(7.8321e+00)

CLPSO 5.1123e+02
(9.5745e+01)

9.5770e+02
(7.9452e+00)

5.3616e+02
(7.7860e+00)

2.1000e+02
(3.8643e-04)

2.1100e+02
(9.1113e+01)

DMS-PSO 8.6685e+02
(3.4713e+01)

5.2356e+02
(1.2063e+01)

8.7736e+002
(2.8510e+01)

2.1804e+02
(1.0258e+01)

2.2455e+02
(1.9082e+00)

wFIPS 8.6328e+02
(7.1084e+01)

5.2168e+02
(2.3153e+01)

8.6622e+02
(2.1347e+01)

2.1798e+02
(9.7082e+00)

2.1924e+02
(1.0445e+01)

CPSO 8.2179e+02
(7.9673e+00)

1.2179e+03
(9.7679e+01)

5.4617e+02
(5.1238e+01)

9.6411e+02
(5.9474e+00)

9.5683e+02
(5.8653e+01)

Hierarchical D-
LPSO

5.0000e+02
(1.0000e+00)

5.0000e+02
(1.2189e+00)

5.3416e+02
(1.2212e+00)

2.0000e+02
(1.9874e-06)

2.1001e+02
(1.5874e+00)

Algorithms

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

DE/rand/1/bin -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
jDE -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

UPSO -1 -1 -1 -1 1 -1
CLPSO -1

DMS-PSO -1
wFIPS -1
CPSO -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1(better) 0(equal) -1(worse)

The above five comparison tables (Table 1 to Table 5) indicate
that out of the 25 in 22 cases Hierarchical D-LPSO has
outperformed the competitor algorithms considering mean
error. In case of rotated and hybrid composition functions the
performance of Hierarchical D-LPSO is quite well. It performs
well also in case of functions involving noise in fitness.
Hierarchical D-LPSO has been outperformed only in three
functions. It can be also seen from the tables that it provides
statistically superior results than the other PSO-variants in
almost all the functions.

VIII. CONCLUSIONS
After its development more than a decade ago, PSO has
eventually become a very powerful method of real-parametric
function optimization. The new variant of PSO proposed here
and referred to as Hierarchical D-LPSO, has been studied for a
set of test functions. The performance of this new algorithm
on the benchmark functions of CEC-05 is compared to other
existing algorithms like CLPSO, CPSO, jDE, wFIPS, etc.
Hierarchical D-LPSO performs very well on all the functions
and it has outperformed the competitor algorithms over 22 out
of 25 cases in a statistically significant fashion.

Nowadays an extensive research work is going on in
designing various algorithms to optimize large-scale high-
dimensional problems (D = 1000, D = 500). It needs focused
research to improve the performance of Hierarchical D-LPSO
in case of high dimensional problems. Our future work will be
on the improvement of Hierarchical D-LPSO.

ACKNOWLEDGEMENTS

This work was supported by the Czech Science Foundation,
under the grant no. GA102/09/1494.

REFERENCES
[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”

in Proc. IEEE Conf. Neural Networks IV, Piscataway, NJ, 1995.
[2] R. C. Eberhart and Y. Shi, “Particle swarm optimization:

developments, applications and resources,” in Proc. 2001
Congr. Evolutionary Computation, vol. 1, 2001.

[3] H.-K. Tsai, J.-M. Yang, Y.-F. Tsai, and C.-Y. Kao, “Some
issues of designing genetic algorithms for traveling salesman
problems,” Soft Comput., vol. 8, no. 10, pp. 689–697, Nov.
2004.

[4] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A unified
particle Swarm optimization scheme” In: Lecture Series on
Computer and Computational Sciences, Vol. 1, Proc. Int. Conf.
Computational Methods in Sciences and Engineering (ICCMSE
2004), VSP International Science Publishers, Zeist, The
Netherlands (2004) 868–873

[5] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Trans. Evol.
Comput., vol. 10, no. 3, pp. 281–295, Jun. 2006.

[6] R. Mendes, J. Kennedy, and J. Neves, “The fully informed
particle swarm: Simpler, maybe better,” IEEE Trans. Evol.
Comput., vol. 8, no. 3,pp. 204–210, Jun. 2004

[7] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle
swarm optimizer,” in Proc. Swarm Intell. Symp., Jun. 2005, pp.
124–129.

[8] R. Storn and K. Price, “Differential evolution a simple and
efficient heuristic for global optimization over continuous
spaces,” J. Global Optimization, vol. 11, no. 4, pp. 341–359,
1997.

[9] J. Brest, S. Greiner, B. Boˇskovi´c, M. Mernik, and V. ˇZumer,
“Self-Adapting Control Parameters in Differential Evolution: A
Comparative Study on Numerical Benchmark Problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[10] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A.
Auger, and S. Tiwari, “Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter
optimization,” Technical Report, Nanyang Technological
University, Singapore, May 2005 and KanGAL Report
#2005005, IIT Kanpur, India.

[11] S. Janson and M. Middendorf, “A Hierarchical Particle Swarm
Optimizer and Its Adaptive Variant”, IEEE Transactions on
Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 35,
no. 6, Dec. 2005.

[12] M. Clerc and J. Kennedy, “The particle swarm–explosion,
stability, and convergence in a multidimensional complex
space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73,
Feb. 2002.

[13] F. Wilcoxon, “Individual comparisons by ranking methods”,
Biometrics, 1, 80-83, 1945.

[14] S. García, D. Molina, M. Lozano, and F. Herrera, “A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms' behavior: a case study on the CEC'2005 special
session on real parameter optimization”, Journal of Heuristics,
Vol. 15, Issue 6, pp. 617-644 Dec. 2009

