
ARTICLE IN PRESS

Computers & Security (2005) -, -e-

www.elsevier.com/locate/cose
A new protocol to counter online dictionary
attacks

Vipul Goyal a,*, Virendra Kumar a, Mayank Singh a,
Ajith Abraham b, Sugata Sanyal c

a Crypto Group, Institute of Technology, Banaras Hindu University, India
b IITA Professorship Program, School of Computer Science and Engineering,
Chung-Ang University, South Korea
c School of Technology and Computer Science, Tata Institute of Fundamental Research, India

Revised 25 August 2005; accepted 21 September 2005

KEYWORDS
Authentication;
Online dictionary
attacks;
Hash functions;
Cryptographic
protocol;
Passwords

Abstract The most popular method of authenticating users is through passwords.
Though passwords are the most convenient means of authentication, they bring
along themselves the threat of dictionary attacks. While offline dictionary attacks
are possible only if the adversary is able to collect data for a successful protocol
execution by eavesdropping on the communication channel and can be successfully
countered by using public key cryptography, online dictionary attacks can be per-
formed by anyone and there is no satisfactory solution to counter them. In this
paper, we propose an authentication protocol which is easy to implement without
any infrastructural changes and yet prevents online dictionary attacks. Our protocol
uses only one way hash functions and eliminates online dictionary attacks by imple-
menting a challengeeresponse system. This challengeeresponse system is designed
in a fashion that it hardly poses any difficulty to a genuine user but is extremely bur-
densome, time consuming and computationally intensive for an adversary trying to
launch as many as hundreds of thousands of authentication requests as in case of an
online dictionary attack. The protocol is perfectly stateless and thus less vulnerable
to denial of service (DoS) attacks.
ª 2005 Elsevier Ltd. All rights reserved.

* Corresponding author.
E-mail addresses: vipul.goyal@cse04. itbhu.org (V. Goyal) , v irendra.kumar@eee06. itbhu.org (V. Kumar),

mayank.singh@eee06.itbhu.org (M. Singh), ajith.abraham@ieee.org (A. Abraham), sanyal@tifr.res.in (S. Sanyal).
0167-4048/$ - see front matter ª 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2005.09.003

mailto:vipul.goyal@cse04.itbhu.org
mailto:virendra.kumar@eee06.itbhu.org
mailto:mayank.singh@eee06.itbhu.org
mailto:ajith.abraham@ieee.org
mailto:sanyal@tifr.res.in
http://www.elsevier.com/locate/cose

ARTICLE IN PRESS

2 V. Goyal et al.
Introduction

Currently, a vast majority of systems use pass-
words as the means of authentication. Passwords
are very convenient for the users, easier to
implement and consequently very popular too.
Although more secure authentication schemes
have been suggested in the past, e.g., using
smartcards, none of them have been in widespread
use in the consumer market. The password based
authentication, although very convenient, has
some drawbacks due to the very nature of this
system. As is obvious, humans have great tendency
to choose relatively short and simple passwords
that they can remember. Thus the chosen pass-
words belong to a small and predictable domain.
They are in fact very much susceptible to exhaus-
tive search or dictionary attacks (Klein, 1990; Morris
and Thompson, 1979). There are several instances
of such attacks on various systems throughout the
world (Hackers find new way to bilk eBay users,
2002).

Password based systems mainly suffer from
offline and online dictionary attacks. In an offline
dictionary attack the adversary eavesdrops on the
communication channel to record data for a suc-
cessful protocol execution. The adversary then
goes offline and tests passwords against the re-
corded protocol execution data without contacting
the server at all. In an online dictionary attack, the
adversary tries the possible passwords by logging in
online. Offline dictionary attacks, although severe,
can be prevented by various protocols using public
key cryptography, suggested in the past. The first
password based authentication protocol, secure
against offline dictionary attacks is called EKE and
was designed by Bellovin and Merritt (1992). Since
then a number of excellent protocols addressing
this problem have been proposed. An interested
reader may refer to Halevi and Krawczyk (1999).
However, no satisfactory measures to curb online
dictionary attacks have been suggested so far.
There are some methods to deal with such attacks
but some of them have security flaws and the
others are impractical in terms of usage. In this pa-
per we will discuss some of the existing protocols,
their strengths and weaknesses and suggest a pro-
tocol to deal with the problem discussed.

Our protocol employs fast one way hash functions
(ANSI, 1993) and reduces the number of possible
guesses in a given time period. This is done by asking
the client to compute the response for a given chal-
lenge (Goyal et al., 2005). The computation of this
response is designed to be a time consuming oper-
ation. Special care is taken to ensure that the
client is not able to reuse the computation and
make the protocol perfectly stateless.

The rest of the paper is organized as follows: In
section ‘‘Related research’’ we discuss the existing
protocols e their strengths, weaknesses and flaws
(if any). Sections ‘‘Basic idea of the protocol’’ and
‘‘The protocol’’ are dedicated to the protocol we
have proposed where we discuss the basic idea be-
hind the design of the protocol and then we discuss
the details of the protocol. In section ‘‘Improve-
ments andmodifications’’ we discuss a few improve-
ments and changes for use in specific situations.
Finally we conclude the paper in the last section.

Related research

Password based systems are vulnerable to online
dictionary attacks. These attacks are difficult to
curb and hence they pose a major problem in the
functioning of password based systems. Counter
measures adopted to prevent the online dictionary
attacks are much more expensive and yet ineffec-
tive. In this section we mention a few measures
adopted these days to prevent this attack and
discuss the drawbacks which they suffer from.

Account locking

After a few fixed number of unsuccessful login
attempts, the account of the particular user is
locked for sometime. No doubt this is helpful in
preventing the possible dictionary attack by limit-
ing the number of wrong guesses in a given time, but
aswewill discover inwhat follows, there are various
problems in such a system in a large network.

If account locking is adopted then the system
will become susceptible to denial of service (DoS)
attack in which an adversary can knowingly launch
many login requests so that the user’s account may
get locked for a fixed period. Thus, the genuine
users are deprived of the service in that period.
Yahoo!, for example, reports that users who
compete in auctions use these methods to block
the account of other users competing in the same
auctions. This attack may be worrisome to mission
critical applications, for example to enterprises
whose employees and customers use the web to
login to their accounts. In a similar manner,
distributed denial of service (DDoS) attack may
also be launched on a system employing the
account locking feature. In this, the attacker could
plant hidden agents around the web and all the
agents could start operating at a specific time.
Thus, they could block virtually a large proportion

ARTICLE IN PRESS

A new protocol to counter online dictionary attacks 3
of the accounts of the attacked server by trying to
login into accounts in that server using random
passwords.

Another major drawback of the ‘‘account lock-
ing feature’’ is that since it causes user accounts to
be locked, either by mistake (e.g. by users who do
not type their passwords correctly) or as a result of
dictionary attacks, the service provider must
operate customer service centres to handle calls
from users whose accounts are locked. The cost of
running these centres is high, and is estimated to
cost more than $25 per customer call. Imagine that
each user locks his account once in every five
years, then the service cost, per user, per year, is
at least $5. A news article (Hackers find new way
to bilk eBay users, 2002) suggested that eBay had
not implemented account locking features due to
the costs of operating customer support centres.

An option here for the service provider could be
to automatically unlock the account after a fixed
amount of time (e.g. 12 h). But then, it is easy for
anyone to keep the account of a customer always
locked (e.g. by using programs which send login re-
quests with random passwords after every 12 h)
and thus totally depriving the customer of the
service.

Despite the above serious problem, account
locking is still a commonly adopted countermea-
sure against online dictionary attacks. Major web
based service providers like Yahoo! use this ap-
proach to counter online dictionary attacks.

Delayed response

In this scheme, the server provides a delayed
response to the user request, say for example,
not faster than one answer per second. This may
prevent an attacker from checking enough number
of passwords in a reasonable time.

This scheme is very effective for local machines
in which the user has to login to the computer
using a physically attached keyboard. However, it
is totally ineffective in a network environment.
The attacker can try many login attempts in
parallel and circumvent the timing measure using
the fact that user logins are typically handled by
servers that can handle many login sessions in
parallel. For example, the attacker can send a login
attempt every 10 ms, thus obtaining a throughput
of 100 login attempts per second, regardless of
how long the server delays the answer to a given
login attempt. This scheme also suffers from global
password attacks. A system that has many user ac-
counts and enables logins over a network accessi-
ble to the adversary, suffers from such attacks.
In many situations, an attacker is interested in
breaking any account in the system, rather than
targeting a specific account.

Use of CAPTCHA

CAPTCHA stands for Completely Automated Public
Turing Test to Tell Computers and Humans Apart
(Pinkas and Sander, 2002). In this scheme, some
challenge is put forward to the user while attempt-
ing to login. It has been established that these
challenges, for example a distorted and cluttered
image of a word with textured background, are
easy for humans to respond but rather difficult
for computers (an online attacker is essentially
a programmed computer) to answer. Until recently,
this scheme was an effective countermeasure
against online dictionary attacks. However, due
to recent developments in Artificial Intelligence
and Computer Vision, programs are available
which can quickly interpret and answer these chal-
lenges. EZ-Gimpy and Gimpy for example are word
based CAPTCHAs that have been broken by Greg
Mori and Jitendra Malik of UC Berkeley Computer
Vision Group (Berkeley, 2004). Due to these devel-
opments, even CAPTCHA is not considered to be
a secure technique to prevent online dictionary
attacks.

A few major web based service providers who
were earlier using the CAPTCHA technique have
now resorted to highly inconvenient account lock-
ing in order to counter online dictionary attacks.
Clearly, a better and elegant method for solving
this pressing problem is required.

Basic idea of the protocol

Looking at the various instances of online dictio-
nary attacks, one point is very clear. All these are
possible because they pose very little difficulty to
the attacker. Due to the particular structure of the
present systems, it is immaterial whether one
launches one request or one million requests e
the response time is same in both the cases. This
is a major advantage for the attackers. Attackers
use computers to launch thousands of requests in
a fraction of a second and are thus able to achieve
their purpose of testing a large number of pass-
words for validity. It may thus be concluded that
the dictionary attacks can be prevented if the
whole process of bulk requesting is made compli-
cated, time consuming and costly without ham-
pering the ease of use for genuine users.

The proposed protocol has a major advantage
that it can completely eliminate the possibility of

ARTICLE IN PRESS

4 V. Goyal et al.
a large number of password guesses in a small time
interval by making it difficult and costly. Even the
dedicated computers used by attackers will face
much difficulty in launching several requests at the
same time. Along with the prevention of online
dictionary attacks, the proposed protocol is state-
less and thus less vulnerable to DoS attacks
(Rivest, 1998).

Note that our protocol does not use public key
cryptography. This means that the protocol is
vulnerable to offline dictionary attacks if an
adversary records data for a successful protocol
execution by eavesdropping on the communication
channel.1 In order to resist offline dictionary at-
tacks, the server and client may first establish an
SSL connection and the session key could be used
to encrypt different messages of the protocol. Major
web based service providers like Yahoo! and
Hotmail, etc already use SSL for protecting login
data in transit. Hence, this does not require any in-
frastructural changes. In cases where performance
degradation due to public key cryptography is
a concern, we provide a variant of our protocol
which makes it very difficult to launch offline dic-
tionary attacks.

Our protocol uses only fast one way hash
functions (ANSI, 1993). The user and the server
are required to perform a few hash calculations
for logging in. The system is deliberately made
time consuming and computationally intensive
for the client to ensure that it is not able to
make a large number of authentication requests
per second. However, our system is extremely effi-
cient for the server. Hash functions, unlike public
key cryptography, can be computed using mini-
computers, handhelds or by easily available mobile
code like Java or JavaScript Program.

The protocol

This is a four pass protocol and only hash compu-
tations are employed throughout the protocol.
Two out of four messages are simple message
exchange without any encryption. The remaining
two messages involve hash computation: once by
the user and once by the server, as illustrated in
Fig. 1. The protocol presents a challenge for the
user by the server and the user can login only after
cracking the presented challenge which requires
some computation time. This computation time
can be easily increased or decreased by the server
1 Halevi and Krawczyk (1999) gave a mathematical proof sug-

gesting that no symmetric key password based authentication
protocol can resist offline dictionary attacks and it is mandatory
to use public key cryptography to design such protocols.
at will. We describe our protocol message by mes-
sage touching each and every point. The protocol
description is followed by a brief discussion of
the different security measures taken to prevent
the major threats. Throughout the discussion the
user is assumed to be Alice (A) and the server to
be Bob (B).

Protocol description

Message 1. A/ B: Alice
This is a simple request by the user Alice that she
wants to login.

Message 2. B/ A: H(r, R), R, H(H(r, P), Alice,
KBob, n)
In response to the request sent by the user, the
server sends the message 2 in which it sends
a challenge H(r, R), the value of R and the message
authentication code (MAC) H(H(r, P), Alice, KBob, n).
The challenge is the hash of two random numbers
r (20-bit) and R (128-bit) appended together. The
user has to find out r from the given hash value
and the value of R. r may be any possible 20-bit
number. We will discover shortly the various pur-
poses for which r and R have been used. The third
part of the message, MAC is again a hash value and
unintelligible to anyone other than the server. This
hash can be regenerated only by the server as the
secret key KBob is known only to the server. Note
that the client does not use this MAC in anyway.
It only has to return the supplied MAC to the server
in the next step so that the server does not have to
store it. This MAC is used by the server to check

Alice

H(r, R), R, H(H(r, P), Alice, KBob, n)

Alice, H(r, P), H(H(r, P), Alice, KBob, n)

Success/Fail

A
L
I
C
E

B
O
B

Figure 1 Different passes of the protocol. The follow-
ing notations have been used: KBob Z secret key of the
server Bob, known only to him and no one else;
PZ password of the user; nZ number of unsuccessful
login attempts, to be stored by the server; rZ a 20-bit
random number; R Z a 128-bit random number;
MACZmessage authentication code, to be sent by the
server to the client; H(X)Z hash value of X, using stan-
dard hash function.

ARTICLE IN PRESS

A new protocol to counter online dictionary attacks 5
the correctness of the value of r found by the user
and also for the freshness of the message when the
user replies with the message 3 as we will see
later.

To find out the value of r, the user has to check
the hash values of all the possible 20-bit numbers
appended with the value of R. This computation
is bit intensive and may require considerable
time (about 5 s or even more depending on the sys-
tem used). If instead of two random numbers only
one large random number is used, then this com-
putation time is very large and hence the user
will be over burdened, which is undesirable. And
if only a small 20-bit random number is used,
then the attacker might store the hash values of
all the possible 20-bit random numbers and could
easily bypass the computation involved by simply
searching for the correct value of r from the corre-
sponding stored hash values. The use of two ran-
dom numbers, one of 20 bits and the other of
128 bits thus fulfils two purposes. First, it gives
just the right amount of computation to the user
so that the online dictionary attacks are effective-
ly countered as well as a genuine user is not dis-
turbed. Secondly, it prevents the possibility of
pre-computation of hash values for all possible
20-bit numbers. Thus, the number R effectively
acts as a salt (Salt (cryptography); Ritter) in the
computation of the number r.

The user, after receiving the second message,
does the required calculations and finds the value
of r, and then it proceeds with the third message.

Message 3. A/ B: Alice, H(r, P), MAC
In order to make the protocol stateless, this step
has been made independent of the previous steps,
i.e. the client initiates the connection again after
doing the required computation and starts with the
3rd step of the protocol directly.

The user, after receiving the second message,
finds the value of r from the given values and then
sends her name, hash of the found value of r ap-
pended with the password P, and the MAC. In the
message, the values of r and P could have been
sent directly (without hashing) but it has been
hashed to make the protocol secure against an
eavesdropper.

The server, after receiving this message, finds
out the hash of the sent H(r, P) appended with the
id of Alice, his secret key (KBob) and the stored value
of n. It then compares the obtained hash value
with the sent MAC. If they match, the login at-
tempt is successful, else the login attempt fails
and the server increments the value of n.

The use of the MAC is that it authorizes the
supplied r to be the response of a challenge
generated by the server and prevents the freshness
attack, in which the attacker may use the same set
of values again and again. We have used the value
of n (number of unsuccessful attempts) in the com-
putation of theMACwhich is dynamic. So, a repeated
use of message 2 is not possible as n increments on
every unsuccessful attempt.

Here, an important point to observe is that n
does not increment on a successful attempt. This
is an interesting feature making the protocol
friendly to the legitimate users. This means that
if the user was successful in her last login attempt,
she would be allowed to bypass the computation
involved by reusing the last computation. Thus a le-
gitimate user may actually be required to perform
the computation only for the first time she tries to
login. For every subsequent login attempts, the
last computation could be reused as long as the
login attempt does not fail.

By the use of MAC, the server is also relieved from
the burden of storing the current values of r, R for
checking the correctness of the value sent by the
client. This makes the protocol perfectly stateless.

Message 4. B/ A: success/fail
This is a simple reply by the server that the
information provided by the user was correct or
not. If found correct, the login attempt is success-
ful, otherwise the user has to start all over again
with the first message.

The protocol presented above is designed to
eliminate the online dictionary attacks. For every
login attempt, the user has to compute the value
of r which is supplied by the server as a challenge.
This computation requires some time which may
vary from computer to computer. This computa-
tion time can be adjusted by simply varying the
size of number r to keep pace with the computa-
tional speed of a processor which increases pro-
gressively with technological improvement. This
required computation time is to discourage the on-
line dictionary attack in which a dedicated com-
puter launches thousands of login requests in
a few seconds. By incorporating this protocol,
the number of authentication requests possible in
a given period is reduced drastically and hence
the whole process of launching online dictionary
attacks becomes very difficult and costly.

A brief discussion

In order to better understand the protocol, we
discuss the different instances where an adversary
may try to defeat the scheme and how the pro-
tocol resists such attempts.

ARTICLE IN PRESS

6 V. Goyal et al.
In our scheme, the server is not supposed to store
the value of either r or R and hence it verifies the
values supplied by the user (in message 3) only
from the supplied MAC. An attacker might be temp-
ted to use the same MAC and hence reuse the com-
putation for different login attempts. However,
such an attempt is countered by our protocol. The
server uses the stored n to compute the MAC. Since
the value of stored n would be more than the value
of n in the sent MAC, both the MACs would not
match. Hence, the attempt to reuse the computa-
tion fails. An attacker, under no circumstances,
will be able to change the MAC for different set of
values of H(r, P) and n since the secret key used in
the MAC is not known to any body except the server.

Ina similarway, anattempt touse the samevalues
ofmessage 3 (computed for one user id) for different
user ids will easily be countered by the server since
the user id is also used in the MAC computation.

Improvements and modifications

The presented protocol does not take care of the
situation in which the server itself can be compro-
mised. This is because the server is required to
store the user password in plaintext since it was
used for the computation of H(r, P) in the compu-
tation of MAC. The protocol can be augmented so
that the server only stores a one way hash H(P)
of the password and the authenticating user is re-
quired to know the actual password itself. There
are two such variations possible.

(a) The first one is simple yet effective in main-
taining the desired secrecy of the password.
In this, the server stores the hash of the pass-
word and the user is required to send the pass-
word in plaintext. Hence, even if the server is
compromised, the attacker is not able to find
out the actual password, thus preventing the
attacker from logging in successfully on behalf
of the user. Use of SSL session is strongly rec-
ommended in this variant of the protocol, as
otherwise the password would be directly ob-
tained from message 3. The different passes
of the protocol after this modification are as
follows. Note that the MAC has also changed.
A/ B: Alice
B/ A: H(r, R), R, MAC
A/ B: Alice, r, P, MAC
B/ A: success/fail
MACZ H(r, H(P), Alice, KBob, n)

(b) The second variant is relatively complex but
does not make it mandatory to use SSL
protection. It employs the concept of lamport
hashes (Lamport, 1981). To begin with, the
server stores Hm(P) (which is the mth hash of
P) and the user is required to supply H(m�1)(P)
as a password. Once the user has successfully
logged in, the stored Hm(P) is replaced by the
supplied H(m�1)(P). Thus, next time the user
would be required to supply H(m�2)(P). This
process continues simply for m successful login
attempts. Although it may seem that the user
is required to re-initialize the system by choos-
ing a different password after m successful log-
ins, there are recently designed efficient
techniques (Goyal, 2004a,b) which allow infin-
ite number of login in the lamport system. Mes-
sages for the ith execution of the protocol are
given below.
A/ B: Alice
B/ A: H(r, R), R, MAC
A/ B: Alice, r, H(i�1)(P), MAC
B/ A: success/fail
MACZ H(r, Hi(P), Alice, KBob, n)

Thus, we see that we have augmented the
protocol so that the server is not required to store
plaintext password and use of SSL therefore is not
mandatory.

(c) As discussed earlier, it may be desirable to re-
sist offline dictionary attacks without using SSL
or other public key cryptographic techniques
due to efficiency concern. Although this is the-
oretically impossible (Halevi and Krawczyk,
1999), we design a variant which makes it
very difficult to launch successful offline dic-
tionary attacks. A minor variation in the mes-
sages produces interesting results. In message
2, if H(r, R) is changed to H(r, P, R) (with other
things unchanged), then the protocol is highly
effective in preventing offline dictionary at-
tacks.

The different passes of the protocol are as
follows:
A/ B: Alice
B/ A: H(r, P, R), R, MAC
A/ B: Alice, H(r, P), MAC
B/ A: success/fail
MACZ H(H(r, P), Alice, KBob, n)

Now, in such a situation let us try to analyze the
system by assuming that the SSL session key has
not been used to protect the different passes of
our protocol. The time required by a legitimate
user to find out r from the values supplied in mes-
sage 2 is not affected, as the values of P and R used
in the hash H(r, P, R) are known to the user. The

ARTICLE IN PRESS

A new protocol to counter online dictionary attacks 7
only thing unknown to the user is r. So the required
computation is similar to that in original protocol.
Taking standard values of time required in hash
computation to be tZ 0.005 ms, the maximum
time required by the user to compute r will be
220! t i.e. 220! 0.005! 0.001 (Z5.24288 s)
which is 5 s approximately.

Let n be the average number of guesses in an off-
line dictionary attack before the actual password is
found out. Now, since the attacker does not know
the value of P as well as r, to find the correct values
of r and P from message 2 he will require 220! n
hash computations (i.e. he will have to try all possi-
ble combinations of passwords and 20-bit digits).
Taking standard value of n to be 10 millions, the
time required will be 220! 10,000,000! 0.005
! 0.001 sZ 52,428,800 sZ 1.6625 years. Note
that thismayactuallybemuchmore fora reasonably
good password.

To see how difficult it is to successfully launch
an offline dictionary attack without this technique,
i.e. in the original protocol proposed in section The
protocol, we compute the time taken to launch
offline dictionary attack in the original protocol
under the same setting. The time taken by the at-
tacker to compute ‘r’ from message 2 will be equal
to (220)! t (i.e. he will try all the possible 20-bit
digits) and then the time taken to compute the
password from message 3 will be n! t. So, the to-
tal time required to find out the password from the
two messages is (220! tC n! t). Evaluating this
expression, we get the time to be (5.24288C
50)Z 55.24288 s.

Thus, it is clear that this variant is very effective
in the prevention of offline dictionary attacks. This
variant should be used when the protocol execu-
tion is not protected by SSL due to performance
concerns.

Conclusions

There are no satisfactory means to counter online
dictionary attacks. In this paper, we addressed the
problem of online dictionary attacks and pre-
sented an authentication protocol to counter the
same. The proposed protocol uses only fast one
way hash functions and is based on a challengee
response system. Before logging in, the client is
required to compute the response to the presented
challenge. Computing this response is deliberately
designed to be a moderately time consuming
operation, thus ensuring that the client is not
able to launch a large number of login requests
in a small amount of time. The protocol is designed
in a fashion such that the computation of this
response hardly poses any problems for a legiti-
mate user (who may reuse the last computation),
but is extremely time consuming and costly for an
adversary trying to launch thousands of login
requests per second. Finally, we provided three
variants of our protocol. The first two are con-
cerned with augmenting the protocol so that the
server is not required to store the password in
plaintext. The third one is concerned with re-
moving offline dictionary attacks in case public key
cryptographic protection is not used.

Future work involves modifying the protocol
such that the size of r and hence the required com-
putation increases dynamically as the server en-
counters a large number of unsuccessful attempts
in a small time window. It is to be noted that the
presented technique could be used to address
the problem of eliminating more general denial
of service attacks on web servers by limiting the
number of requests per second in a similar fashion.

References

ANSI X9.30 (PART 2). American National Standard For Financial
Services e public key cryptology using irreversible algo-
rithms for the financial services industry e part 2: the secure
hash algorithm (SHA). ASC X9 Secretariat: American Banker’s
Association; 1993.

Bellovin SM, Merritt M. Encrypted key exchange: password-
based protocols secure against dictionary attacks. In: Pro-
ceedings of IEEE computer society symposium on research
in security and privacy; May 1992. p. 72e84.

!http://www.cs.berkeley.edu/~moriO; 2004 [accessed on
October 08, 2004].

Goyal V. How to re-initialize a hash chain, Cryptology ePrint
Archive, Report 2004/097. Available from: eprint.iacr.org;
2004a.

Goyal V. Password based authentication without public key
cryptography, manuscript; April 2004b.

Goyal V, Kumar V, Singh M, Abraham A, Sanyal S. CompChall: ad-
dressing password guessing attacks. In: IEEE international
conference on information technology: coding and comput-
ing (ITCC’05). USA: IEEE Computer Society; 2005. p. 739e44.

Hackers find new way to bilk eBay users, CNET%20news.com;
March 25, 2002.

Halevi Shai, Krawczyk Hugo. Public key cryptography and pass-
word protocols. ACM Transaction on Information and System
Security August 1999;2(3):230e68.

Klein DV. Foiling the cracker: a survey of, and improvements to
password security. In: Proceedings of the second USENIX
UNIX security workshop; 1990. p. 5e14.

Lamport L. Password authentication with insecure communica-
tion. Communications of the ACM 1981;24:770e2.

Morris R, Thompson K. Password security: a case history. Com-
munications of the ACM November, 1979;22(11):594e7.

Benny Pinkas, Tomas Sander. Securing passwords against
dictionary attacks. In: Proceedings of the ninth ACM confer-
ence on computer and communications security; 2002.

Ritter Terry. Salts. Online article at, http://www.ciphersbyritter.
com/NEWS6/SALT.HTM; November, 1979.

http://www.cs.berkeley.edu/~mori
http://eprint.iacr.org
http://CNET%20news.com
http://www.ciphersbyritter.com/NEWS6/SALT.HTM
http://www.ciphersbyritter.com/NEWS6/SALT.HTM

ARTICLE IN PRESS

8 V. Goyal et al.
Rivest R. Can we eliminate certificate revocations lists? In: Fi-
nancial cryptography. LNCS. Springer; 1998. p. 178e83.

Salt (cryptography), wikipedia, the free encyclopedia. Available
from: http://en.wikipedia.org/wiki/Salt_(cryptography);
1998.

Vipul Goyal is currently a Cryptography Consultant at OSP
Global, LLC. His primary areas of interest are cryptography
system design with a current focus on authentication proto-
cols, certificate revocation and structures generated from
hash functions like hash chains, hash trees and one time digi-
tal signatures. He has several international publications in
these areas.

Virendra Kumar is a student at Institute of Technology, Banaras
Hindu University, India. His research interests include cryptog-
raphy and cryptanalysis, design of secure identification and au-
thentication protocols, fair-exchange and secure multi-party
computation.

Mayank Singh is a student at Institute of Technology, Banaras
Hindu University, India. His research interests include cryptog-
raphy and cryptanalysis, design of secure identification and au-
thentication protocols, fair-exchange and secure multi-party
computation.

Ajith Abraham currently works as a Distinguished Visiting Pro-
fessor under the South Korean Government’s Institute of Infor-
mation Technology Assessment (IITA) Professorship programme
at Chung-Ang University, Korea. His primary research interests
are in computational intelligence with a focus on using
evolutionary computation techniques for designing intelligent
paradigms. Application areas include several real world knowl-
edge-mining applications like information security, bioinfor-
matics, Web intelligence, energy management, financial
modelling, weather analysis, fault monitoring, multi criteria
decision-making, etc. He has authored/co-authored over 200
research publications in peer reviewed reputed journals, book
chapters and conference proceedings of which three have won
‘best paper’ awards.

He is the Editor of The International Journal of Hybrid Intelli-
gent Systems (IJHIS), IOS Press, Netherlands; Journal of
Information Assurance and Security (JIAS), USA; International
Journal of Computational Intelligence Research (IJCIR), Neuro-
computing Journal, Elsevier Science, The Netherlands; Interna-
tional Journal of Systems Science (IJSS), Taylor & Francis, UK;
Journal of Universal Computer Science (J.UCS), Austria; Journal
of Information and Knowledge Management, World Scientific,
Singapore; Journal of Digital and Information Management
(JDIM), Digital Information Research Foundation, India and In-
ternational Journal of Neural Parallel and Scientific Computa-
tions (NPSC), USA. Since 2001, he is actively involved in the
Hybrid Intelligent Systems (HIS) and the Intelligent Systems De-
sign and Applications (ISDA) series of annual International con-
ferences. He was also the General Co-Chair of The Fourth
IEEE International Workshop on Soft Computing as Transdisci-
plinary Science and Technology (WSTST05), Japan and the Pro-
gram Co-Chair of the Inaugural IEEE Conference on Next
Generation Web Services Practices, Seoul, Korea. He received
PhD degree from Monash University, Australia. More information
at http://ajith.softcomputing.net

Sugata Sanyal is in the Faculty of the Tata Institute of Funda-
mental Research, India. He received his Ph.D. degree from
Mumbai University, India, M.Tech from IIT, Kharagpur, India
and B.E. from Jadavpur University, India. His current research
interests include security in wireless and mobile ad hoc net-
works, distributed processing, and scheduling techniques. He
has published numerous papers in national and international
journals and attended many conferences. He is in the editorial
board of three International Journals. He is co-recipient of
‘‘Vividhlaxi Audyogik Samsodhan Vikas Kendra Award (VASVIK)’’
for Electrical and Electronics Science and Technologies (com-
bined) for the year 1985. He was a Visiting Professor in the De-
partment of Electrical and Computer Engineering and Computer
Science in the University of Cincinnati, Ohio, USA in 2003. He
delivered a series of lectures and also interacted with the Re-
search Scholars in the area of Network Security in USA, in Uni-
versity of Cincinnati, University of Iowa, Iowa State University
and Oklahoma State University. He has been an Honorary Mem-
ber of Technical Board in UTI (Unit Trust of India) and SIDBI
(Small Industries Development Bank of India). He has also acted
as a consultant to a number of leading industrial houses in India.
More information about his activities is available at http://
www.tifr.res.in/~sanyal.

http://en.wikipedia.org/wiki/Salt_(cryptography)
http://ajith.softcomputing.net
http://www.tifr.res.in/%126sanyal
http://www.tifr.res.in/~sanyal

	A new protocol to counter online dictionary attacks
	Introduction
	Related research
	Account locking
	Delayed response
	Use of CAPTCHA

	Basic idea of the protocol
	The protocol
	Protocol description
	Message 1. ArarrB: Alice
	Message 2. BrarrA: H(r, R), R, H(H(r, P), Alice, KBob, n)
	Message 3. ArarrB: Alice, H(r, P), MAC
	Message 4. BrarrA: success/fail

	A brief discussion

	Improvements and modifications
	Conclusions
	References

