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systems and shows the usefulness of heuristic and meta-heuristic approaches for the design of efficient
Grid schedulers. We also discuss on requirements for a modular Grid scheduling and its integration with
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1. Introduction

Grid computing and Grid technologies primarily emerged for
satisfying the increasing demand of the scientific computing
community for more computing power. Geographically distributed
computers, linked through the Internet in a Grid-like manner,
are used to create virtual supercomputers of vast amount of
computing capacity able to solve complex problems from e-
Science in less time than known before. Thus, within the last
years we have witnessed how Grid computing has helped to
achieve breakthroughs in meteorology, physics, medicine and
other computing-intensive fields. Examples of such large-scale
applications are known from optimization [1-3], Collaborative/e-
Science Computing [4,5] and Data-Intensive Computing [6], to
name a few.

Grid computing is still in the development stage, and many
challenges are to be addressed. Among these, improving its
efficiency is a key issue. The question is: How do we make use of
a large number of computers worldwide, ranging from simple laptops,
to clusters of computers and supercomputers connected through
heterogenous networks in an efficient, secure and reliable manner?
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For the majority of Grid systems, scheduling is a very important
mechanism. In the simplest of cases, scheduling of jobs can be
done in a blind way by simply assigning the incoming tasks to
the available compatible resources. Nevertheless, it is a lot more
profitable to use more advanced and sophisticated schedulers.
Moreover, the schedulers would generally be expected to react
to the dynamics of the Grid system, typically by evaluating the
present load of the resources, and notifying when new resources
join or drop from the system. Additionally, schedulers can be
organized in a hierarchical form or can be distributed in order to
deal with the large scale of the Grid.

An important issue here is how to formally define the Grid
scheduling problem. In this paper we present the most important
and useful computational models for this purpose. Then, we focus
on the design of efficient Grid schedulers using heuristic and
meta-heuristic methods. Heuristic and meta-heuristic methods
have proven to be efficient in solving many computationally
hard problems. They are showing their usefulness also in the
Grid computing domain, especially for scheduling and resource
allocation. We analyze why heuristic and meta-heuristic methods
are good alternatives to more traditional scheduling techniques
and what make them appropriate for Grid scheduling.

The rest of the paper is organized as follows. We present in
Section 2 a few important concepts from Grid computing, and
introduce a few types of Grids in view of the needs for different
types of scheduling and resource allocation. Then, in Section 3
we identify different types of scheduling problems arising in Grid
systems. Computational models for Grid scheduling are given in
Section 4, while in Section 5 we focus on the current state of
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using heuristic and meta-heuristic methods for solving scheduling
problems in Grid systems. The integration of Grid schedulers into
Grid architecture is tackled in Section 6. A few other issues such
as security and Grid services scheduling are discussed in Section 7.
We end the paper in Section 8 with some conclusions.

2. The many Grids

The roots of Grid computing can be traced back to the late 1980s
and the first concept that laid the basis of today’s Grid systems
were developed by researchers from distributed supercomputing
for numerical and optimization systems. By the late 1990s, the
terms Computational Grids and Grid Computing were popularized
by Foster et al. [7], who developed the Globus Toolkit as a general
middleware for Grid Systems. Since then, Grid systems have
advanced very quickly. In the following subsections we briefly
review the most important types of Grids that have appeared
during recent years.

Computational Grids. Computational Grids are among the first type
of Grid systems. They were developed due to the need to solve
problems that require processing a large quantity of operations
or data. In spite of the fact that the capacity of the computers
continues to improve, the computational resources do not respond
to the continuous demand for more computational power.
Moreover, many statistical studies have shown that computers
from companies, administration, etc. are usually underutilized.
One of the main objectives of the Computational Grid is, therefore,
to benefit from the existence of many computational resources
through the sharing.

Scavenging Grids. In such Grids, the politics of “scavenging” is
applied, according to which, each time a machine remains idle, it
reports its state to the Grid node responsible for the management
and planning of the resources. Then, this node usually assigns
to the idle machine the next pending task that can be executed
in that machine. Scavenging normally hinders the owner of the
application, since in the event that the idle machine changes its
state to be busy with tasks not coming from the Grid system, the
application is suspended or delayed. This situation would create
completion times not predictable for Grid-based applications.
Sethi@home project is an example of scavenging Grids.

e-Science Grids. Under the name of e-Science Grids are known types
of Grids that are primarily devoted to the solution of problems
from science and engineering. Such Grids give support to the
computational infrastructure (access to computational and data
resources) needed to solve many complex problems arising in
areas of science and engineering. Representative examples are
EGEE Grid Computing, UK e-Science Grid, German D-Grid, BIG GRID
(the Dutch e-Science Grid) and French Grid’5000, among others.

Data Grids. Data Grids primarily deal with data repositories,
sharing, access and management of large amounts of distributed
data. Many scientific and engineering applications require access
to large amounts of distributed data; however, different data
could have their own format. In such Grid systems many types
of algorithm, such as replication, are important to increase the
performance of Grid-enabled applications that use large amounts
of data. Also, data copy and transfer is important here in order to
achieve high throughput.

Enterprise Grids. Nowadays Grid computing is becoming a signif-
icant component of business as well. Indeed, today’s e-business
must be able to respond to increasing consumer demands and ad-
just dynamically and efficiently to marketplace shifts. Enterprise
Grids enable running several projects within one large enterprise
to share resources in a transparent way. Enterprise Grids are thus
showing great and innovative changes on how computing is used.

The Grid offers a large potential to solving business problems by fa-
cilitating global access to enterprise computing services and data.
Examples of Enterprise Grids are “Sun Grid Engine”, “IBM Grid”,
“Oracle Grid” and “HP Grid".

Desktop Grids. A new form of Enterprise Grids is also emerging
in institutions, the so-called Desktop Grids, which use the idle
cycles of desktop PCs. Small enterprises and institutions usually are
equipped with hundreds or thousands of desktops, mainly used for
office tasks. This amount of PCs is thus a good source for setting
up a Grid system for the institution. In this case, the particularity
of the Grid system is its unique administrative domain, which
makes it easier to manage due to the low heterogeneity and
volatility of resources. Of course, the desktop Grid can cross many
administrative domains and in this case the heterogeneity and
volatility of the resources is an issue, as in a general Grid system
setting.

3. Scheduling problems in Grid systems

Rather than a problem, scheduling in Grid systems is a family
of problems. This is due to the many parameters that intervene
scheduling as well as due to the different needs of Grid-enabled
applications. In the following, we give some basic concepts
of scheduling in Grid systems and identify the most common
scheduling types. Needless to say, job scheduling in its different
forms is computationally hard; it has been shown that the problem
of finding optimum scheduling in heterogeneous systems is in
general NP-hard [8].

3.1. Basic concepts and terminology

Although many types of resources can be shared and used in
a Grid system, usually they are accessed through an application
running in the Grid. Normally, an application is used to define
the piece of work of higher level in the Grid. A typical Grid
scenario is as follows: an application can generate several jobs,
which in turn can be composed of subtasks; the Grid system is
responsible for sending each subtask to a resource to be solved.In a
simpler Grid scenario, it is the user who selects the most adequate
machine to execute its application or subtasks. However, in
general, Grid systems must dispose of schedulers that automatically
and efficiently find the most appropriate machines to execute an
assembly of tasks.

3.1.1. New characteristics of scheduling in Grids

The scheduling problem is one of the most studied problems in
the optimization research community. However, in the Grid setting
there are several characteristics that make the problem different
and more challenging than its version of conventional distributed
systems. Some of these characteristics are the following.

e The dynamic structure of the Computational Grid. Unlike
traditional distributed systems, resources in a Grid system can
join or leave the Grid in an unpredictable way. This could be
simply due to losing connection to the system or because their
owners switch off the machine or change the operating system,
etc. Given that the resources cross different administrative
domains, there is no control over the resources.

e The high heterogeneity of resources. In Grid systems, computa-
tional resources could be very disparate in their computing ca-
pacity, ranging from laptops, desktops, clusters, supercomput-
ers and even small computational devices. Current Grid infras-
tructures are not yet much versatile but heterogeneity is among
most important features in any Grid system.

o The high heterogeneity of jobs. Jobs arriving at any Grid system
are diverse and heterogenous in terms of their computational
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needs. For instance, they could be computing intensive or
data intensive; some jobs could be full applications having
many specifications and others could be just atomic tasks.
Importantly, in general the Grid system will not be aware of the
type of tasks arriving in the system.

e The high heterogeneity of interconnection networks. Grid re-
sources are connected through the Internet using different in-
terconnection networks. Transmission costs will often be very
important in the overall Grid performance and hence smart
ways to cope with the heterogeneity of interconnection net-
works is necessary.

e The existence of local schedulers. Grids are expected to be
constructed by the “contribution” of computational resources
across institutions, universities, enterprises and individuals.
Most of these resources could eventually be running local
applications and use their local schedulers, say, a Condor
system. In such cases, one possible requirement would be to use
the local scheduler.

e The existence of local policies on resources. Again, due to the
different ownership of the resources, one cannot assume
full control over the Grid resources. Companies might have
unexpected computational needs and may decide to reduce
their contribution to the Grid. Other policies on access, available
storage, pay-per-use, etc. are also to be taken into account.

e The job-resource requirements. Current Grid schedulers assume
full availability and compatibility of resources when scheduling.
In real situations, however, many restrictions and/or incompat-
ibilities could be derived from job and resource specifications.

e The large scale of the Grid system. Grid systems are expected
to be large scale. Similarly, the number of jobs, tasks or
applications submitted to the Grid over time could be large
as well. Therefore, the efficient management of resources and
planning of jobs will require the use of different types of
scheduling (super-schedulers, meta-schedulers, decentralized
schedulers, local schedulers, resource brokers, etc.) and their
possible hierarchical combinations to achieve scalability.

e Security. This characteristic, which is non-existent in classical
scheduling, is an important issue in Grid scheduling. Here the
security can be seen as a two-fold objective: on the one hand,
a task, job or application could have security requirements and,
on the other hand, the Grid nodes could have their own security
requirements.

3.1.2. A general definition and terminology

A precise definition of a Grid scheduler will much depend on the
way the scheduler is organized (whether it is a super-scheduler,
meta-scheduler, decentralized scheduler or a local scheduler) and
the characteristics of the environment such as dynamics of the
system. In a general setting, however, a Grid scheduler will be
permanently running as follows: receive new incoming jobs, check
for available resources, select the appropriate resources according
to availability, performance criteria and produce a planning of
jobs to selected resources. Usually the following terminology is
employed for scheduling in Grids.

Task:  Represents a computational unit (typically a program

and possibly associated data) to run on a Grid node.

Although in the literature there is no unique definition

of task concept, usually a task is considered as an

indivisible schedulable unit. Tasks could be independent

(or loosely coupled) or there could be dependencies (Grid

workflows).

Job: A job is a computational activity made up of several
tasks that could require different processing capabilities
and could have different resource requirements (CPU,
number of nodes, memory, software libraries, etc.) and
constraints, usually expressed within the job description.
In the simplest case, a job could have just one task.

Application: An application is the software for solving a problem
in a computational infrastructure; it may require splitting
the computation into jobs or it could be a “monolithic”
application. In the later case, the whole application is
allocated in a computational node and is usually referred
to as application deployment. Applications could have
different resource requirements and constraints, usually
expressed within the application description.

Resource: A resource is a basic computational entity (computa-
tional device or service) where tasks, jobs and applica-
tions are scheduled, allocated and processed accordingly.
Resources have their own characteristics such as CPU
characteristics, memory, software, etc. Several parame-
ters are usually associated with a resource, among them
the processing speed and workload, which change over
time. Moreover, the resources may belong to different ad-
ministrative domains, implying different policies on us-
age and access.

Specifications: Task, job and application requirements are usually
specified using high-level specification languages (meta-
languages). Similarly, the resource characteristics are ex-
pressed using specification languages. One such language
is the ClassAds language [9].

Resource pre-reservation: Pre-reservation is needed either when
tasks have requirements on the finishing time or
when there are dependencies that require advance
resource reservation to assure the correct execution of
the workflow. The advance reservation goes through
negotiation and agreement protocols between resource
providers and consumers.

Planning: A planning is the mapping of tasks to computational
resources.

Grid scheduler: Software components in charge of computing a
mapping of tasks to Grid resources under multiple crite-
ria and Grid environment configurations. Different lev-
els within a Grid scheduler have been identified in the
Grid computing literature, comprising super-schedulers,
meta-schedulers, local/cluster schedulers and enterprise
schedulers. As a main component of any Grid system,
the Grid scheduler interacts with other components of
the Grid system: Grid information system, local resource
management systems and network management sys-
tems. It should be noted that, in Grid environments, all
these kinds of schedulers must coexist, and they could in
general pursue conflicting goals; thus, there is the need
for interaction and coordination between the different
schedulers in order to execute the tasks.

Super-scheduler: This kind of scheduler corresponds to a central-
ized scheduling approach in which local schedulers are
used to reserve and allocate resources in the Grid, while
the local schedulers manage their job queue processing.
The super-scheduler is in charge of managing the ad-
vance reservation, negotiation and service level agree-
ment.

Meta-scheduler: This kind of scheduler (also known as a meta-
broker) arises when a single job or application is allocated
in more than one resource across different systems.
As in the case of super-schedulers, a meta-scheduler
uses local schedulers of the particular systems. Thus,
meta-schedulers coordinate local schedulers to compute
an overall schedule. Performing load balancing across
multiple systems is a main objective here.

Local/cluster scheduler: This kind of scheduler is in charge of
assigning tasks to resources in the same local area
network. The scheduler manages the local resources and
the local job queuing system and is thus a “close to
resource” scheduler type.
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Enterprise scheduler: This type of scheduler arises in large en-
terprises having computational resources distributed in
many enterprise departments. The enterprise scheduler
uses the different local schedulers belonging to the same
enterprise.

Immediate mode scheduling: In immediate mode scheduling,
tasks are scheduled as soon as they enter the system.

Batch mode scheduling: In batch mode scheduling, tasks are
grouped into batches which are allocated to the resources
by the scheduler. The results of processing are usually
obtained at a later time.

Non-preemptive/preemptive scheduling: This classification of
scheduling establishes whether a task, job or application
can be interrupted or not, once allocated to the resource.
In the non-preemptive mode, a task, job or application
should entirely be completed in the resource (the re-
source cannot be taken away from the task, job or appli-
cation). In the preemptive mode, preemption is allowed;
thatis, the current execution of the job can be interrupted
and the job is migrated to another resource. Preemption
can be useful if job priority is to be considered as one of
the constraints.

Cooperative scheduling: In cooperative scheduling, a feasible
schedule is computed through the cooperation of proce-
dures, rules, and Grid users.

High-throughput schedulers: The objective of this kind of sched-
uler [10] is to maximize the throughput (average number
of tasks or jobs processed per unit of time) in the system.
These schedulers are thus task-oriented schedulers; that
is, the focus is in task performance criteria.

Resource-oriented schedulers: The objective of this kind of sched-
uler is to maximize resource utilization. These schedulers
are thus resource-oriented schedulers; that is, the focus
is in resource performance criteria.

Application-oriented schedulers: This kind of scheduler is con-
cerned with scheduling applications in order to meet a
user’s performance criteria. To this end, the scheduler
have to take into account the application specific as well
as system information to achieve the best performance of
the application. The interaction with the user could also
be considered.

3.1.3. Phases of scheduling in Grids

In order to perform the scheduling process, the Grid scheduler
has to follow a series of steps which could be classified into
five blocks: (1) Preparation and information gathering on tasks
submitted to the Grid; (2) Resource selection; (3) Computation
of the planning of tasks to selected resources; (4) Task (job or
application) allocation according to the planning (the mapping of
tasks to selected resources); and (5) Monitoring of task completion
(the user is referred to [11] for a detailed description).

Preparation and information gathering: Grid schedulers have ac-
cess to the information on available resources and tasks
through the Grid Information Service. Moreover, the
scheduler will be informed about updated information
(according to the scheduling mode) on jobs and re-
sources.

Resource selection: Not all resources could be candidates for the
allocation of tasks. Therefore, the selection process is
carried out based on job requirements and resource
characteristics. The selection process, again, will depend
on the scheduling mode. For instance, if tasks were to be
allocated in a batch mode, a pool of as many as possible
candidate resources will be identified out of the set of all
available resources. The selected resources are then used

to compute the mapping that meets the optimization
criteria.

As part of resource selection, there is also the
advanced reservation of resources. Information about
future execution of tasks is crucial in this case. Although
the queue status could be useful in this case, it is
not accurate, especially if priority is one of the task
requirements. Another alternative is using prediction
methods based on historical data or user specifications.

Computation of the planning of tasks: In this phase the planning
is computed.

Task allocation: In this phase the planning is made effective: tasks
are allocated to the selected resources according to the
planning.

Task execution monitoring: Once the allocation is done, the
monitoring will inform about the execution progress as
well as possible failures of jobs, which depending on
the scheduling policy will be rescheduled or migrated to
other resources.

3.2. Types of scheduling in Grids

Different types of scheduling are found in Grid systems as
applications could have different scheduling needs such as batch
or immediate mode, task independent or dependent; on the other
hand, the Grid environment characteristics themselves impose
restrictions such as dynamics, use of local schedulers, centralized
or decentralized approach, etc. It is clear that in order to achieve
the desired performance, both the problem specifics and Grid
environment information should be “embedded” in the scheduler.
In the following, we describe the main types of scheduling arising
in Grid environments.

Independent scheduling. Computational Grids are parallel in nature.
The potential of a massive capacity of parallel computation is
one of the most attractive characteristics of computational Grids.
Aside from the purely scientific needs, the computational power
is causing changes in important industries such as biomedics,
oil exploration, digital animation, aviation, financial fields, and
many others. The common characteristic in these uses is that the
applications are written to be able to be partitioned into almost
independent parts (or loosely coupled), which can be scheduled
independently.

Grid workflows. Solving many complex problems in Grids requires
the combination and orchestration of several processes (actors,
services, etc.). This arises due to the dependencies in the solution
flow (determined by control and data dependencies). This class of
applications is known as Grid workflows. Such applications can
take advantage of the power of Grid computing; however, the
characteristics of the Grid environment make the coordination of
its execution very complex [12,13]. Besides the efficiency, Grid
workflows should deal with robustness. Certainly, a Grid workflow
could run for a long period, which in a dynamic setting increases
the possibility of process failure, causing failure of the whole
workflow, if failure recovery mechanisms are not used.

Centralized, hierarchical and decentralized scheduling. Both central-
ized and decentralized scheduling are useful in Grid computing. Es-
sentially, they differ in the control of the resources and knowledge
of the overall Grid system. In the case of centralized scheduling,
there is more control on resources: the scheduler has knowledge
of the system by monitoring of the resource state, and therefore
it is easier to obtain efficient schedulers. This type of scheduling,
however, suffers from limited scalability and is thus not appropri-
ate for large-scale Grids. Moreover, centralized schedulers have a
single point of failure. Another way to organize Grid schedulers
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is hierarchically, which allows one to coordinate different sched-
ulers at a certain level. In this case, schedulers at the lowest level
in the hierarchy have knowledge of the resources. This scheduler
type still suffers from lack of scalability and fault tolerance, yet it
scales better and is more fault tolerant than centralized schedulers.
In decentralized or distributed scheduling there is no central entity
controlling the resources. The autonomous Grid sites make it more
challenging to obtain efficient schedulers. In decentralized sched-
ulers, the local schedulers play an important role. The scheduling
requests, either by local users or other Grid schedulers, are sent to
local schedulers, which manage and maintain the state of the job
queue. This type of scheduling is more realistic for real Grid sys-
tems of large scale, although decentralized schedulers could be less
efficient than centralized schedulers.

Static versus dynamic scheduling. There are essentially two main
aspects that determine the dynamics of the Grid scheduling,
namely: (a) The dynamics of job execution, which refers to the
situation when job execution could fail or, in the preemptive mode,
job execution is stopped due to the arrival in the system of high
priority jobs; and (b) The dynamics of resources, in which resources
can join or leave the Grid in an unpredictable way, their workload
can significantly vary over time, the local policies on usage of
resources could change over time, etc. These two factors decide
the behavior of the Grid scheduler, ranging from static to highly
dynamic. For instance, in the static case, there is no job failure
and resources are assumed available all the time (e.g. in Enterprise
Grids). Although this is unrealistic for most Grids, it could be useful
to consider for batch mode scheduling: the number of jobs and
resources is considered fixed during short intervals of time (time
interval between two successive activations of the scheduler) and
the computing capacity is also considered unchangeable. Other
variations are possible to consider: for instance, just the dynamics
of resources but not that of jobs.

Immediate versus batch mode scheduling. Immediate and batch
scheduling are well-known methods, largely explored in dis-
tributed computing. They are also useful for Grid scheduling. In
immediate mode, jobs are scheduled as soon as they enter the sys-
tem, without waiting for the next time interval when the scheduler
will get activated or the job arrival rate is small having thus avail-
able resources to execute jobs immediately. In batch mode, tasks
are grouped in batches and scheduled as a group. In contrast to im-
mediate scheduling, batch scheduling could take better advantage
of job and resource characteristics in deciding which job to map
to which resource since they dispose of the time interval between
two successive activations of the scheduler.

Adaptive scheduling. The changeability over time of the Grid com-
puting environment requires adaptive scheduling techniques [14],
which will take into account both the current status of the re-
sources and predictions for their future status with the aim of de-
tecting and avoiding performance deterioration. Rescheduling can
also be seen as a form of adaptive scheduling in which running jobs
are migrated to more suitable resources. Casanova et al. [15] con-
sidered a class of Grid applications with large numbers of indepen-
dent tasks (Monte Carlo simulations, parameter-space searches,
etc.), also known as task farming applications. For these applica-
tions with loosely coupled tasks, the authors developed a general
adaptive scheduling algorithm. The authors used NetSolve [1] as a
testbed for evaluating the proposed algorithm. Othman et al. [16]
stress the need for the Grid system’s ability to recognize the state of
the resources. The authors presented an approach for system adap-
tation, in which Grid jobs are maintained, using an adaptable Re-
source Broker. Huedo et al. [17] reported a scheduling algorithm
built on top of the GridWay framework, which uses internally
adaptive scheduling.

Scheduling in data Grids. Grid computing environments are making
possible applications that work on distributed data and even across

different data centers. In such applications, it is not only important
to allocate tasks, jobs or application to the fastest and reliable
nodes but also to minimize data movement and ensure fast access
to data. In other terms, data location is important in such a type of
scheduling. In fact, the usefulness of the large computing capacity
of the Grid could be compromised by slow data transmission,
which could be affected by both network bandwidth and available
storage resources. Therefore, in general, data should be “close” to
tasks to achieve efficient access.

4. Computational models for Grid scheduling

Given the versatility of scheduling in Grid environments,
one needs to consider different computation models for Grid
scheduling that would allow one to formalize, implement and
evaluate - either in a real Grid or through simulation -
different scheduling algorithms. We now present some important
computation models for Grid scheduling. It should be noted that
such models have much in common with computation models
for scheduling in distributed computing environments. We notice
that, in all the models described below, tasks are submitted for
completion to a single resource.

4.1. Expected time to compute model

In this model [ 18], it is assumed that we dispose of estimation or
prediction of the computational load of each task (e.g. in millions
of instructions), the computing capacity of each resource (e.g. in
millions of instructions per second, MIPS), and an estimation of
the prior load of the resources. Moreover, the Expected Time
to Compute matrix ETC of size number of tasks by number of
machines, where each position ETC[t][m] indicates the expected
time to compute task t in resource m, is assumed to be known
or computable in this model. In the simplest of cases, the entries
ETC[t][m] could be computed by dividing the workload of task t by
the computing capacity of resource m. This formulation is usually
feasible, since it is possible to know the computing capacity of
resources while the computation need of the tasks (task workload)
can be known from specifications provided by the user, from
historic data or from predictions [19].

Modelling heterogeneity and consistency of computing. The ETC
matrix model is able to describe different degrees of heterogeneity
in a distributed computing environment through consistency of
computing. The consistency of computing refers to the coherence
among execution times obtained by a machine with those obtained
by the rest of the machines for a set of tasks. This feature is
particularly interesting for Grid systems whose objective is to join
in a single large virtual computer different resources ranging from
laptops and PCs to clusters and supercomputers. Thus, three types
of consistency of computing environment can be defined using the
properties of the ETC matrix: consistent, inconsistent and semi-
consistent.

An ETC matrix is said to be consistent if, for every pair of
machines m; and myj, if m; executes a job faster than m; then m;
executes all the jobs faster than m;. In contrast, in an inconsistent
ETC matrix, a machine m; may execute some jobs faster than
another machine m; and some jobs slower than the same
machine m;. Partially consistent ETC matrices are inconsistent
matrices having a consistent submatrix of a predefined size.
Further, the ETC matrices are classified according to the degree
of job heterogeneity, machine heterogeneity and consistency of
computing. Job heterogeneity expresses the degree of variance
of execution times for all jobs in a given machine. Machine
heterogeneity indicates the variance of the execution times of all
machines for a given job.

Problem instance. From the above description, it can be seen that
formalizing the problem instance is easy under the ETC model;
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it consists of a vector of tasks workloads, a vector of computing
capacity of machines and the matrix ETC. As we will see shortly,
it is almost straightforward to define several optimization criteria
in this model to measure the quality of a schedule. It is worth
noting that incompatibilities among tasks and resources can also
be expressed in the ETC model; for instance, a value of +oo
to ETC[t][m] would indicate that task t is incompatible with
resource m. Other restrictions of running a job on a machine can
be simulated using penalties to ETC values. It is, however, more
complicated to simulate communication and data transmission
costs.

4.2. Total processor cycle consumption model

Despite its interesting properties, the ETC model has an
important limitation, namely, the computing capacity of resources
is assumed unchanged during task computation. This limitation
becomes more evident when we consider Grid systems in which
not only do the resources have different computing capacities
but also they could change over time due to the Grid system’s
computing overload. The computing speed of resources could be
assumed constant only for short or very short periods of time.
In order to remedy this, Fujimoto and Hagihara [20] introduced
the Total Processor Cycle Consumption (TPCC) model. The total
processor cycle consumption is defined as the total number of
instructions the Grid resources could complete from the starting
time of executing the schedule to the completion time. As in
the ETC model, the task workload is expressed in number of
instructions and the computing capacity of resources in number
of instructions computed per unit time. The total consumption of
computing power due to Grid application completion is measured.
Clearly, this model takes into account that resources could change
their computing speed over time, as happens in large-scale
computing systems whose workload is in general unpredictable.

Problem instance. A problem instance in the TPCC model consists
of the vector of task workloads (denoted task lengths in [20]) and
a matrix expressing the computing speed of resources. Since the
computing speed can change over time, one should fix a short time
interval in which the computing speed remains unchanged. Then
a matrix PS (for Processor Speed) is built over time in which one
dimension is processor number and the other dimension is time
(discretized by unit time); the component PS[p][t] represents the
processor’s speed during interval time [t, t + 1). As the availability
and processing speed of a resource vary over time, the processor
speed distribution is used. This model has shown to be useful for
independent and coarse-grain task scheduling.

4.3. Grid information system model

The computation models for Grid scheduling presented so far
allow for a precise description of problem instance; however, they
are based on predictions, distributions or simulations. Currently,
other Grid scheduling models are developed from a higher level
perspective. In the Grid Information System (GIS) model the
Grid scheduler uses task (job or application) file descriptions and
resource file descriptions as well as state information of resources
(CPU usage, number of running jobs per Grid resource), provided
by the GIS. The Grid scheduler then computes the best matching of
tasks to resources based on the up-to-date workload information
of resources. This model is more realistic for Grid environments
and is especially suited for the implementation of simple heuristics
such as First-Come First-Served, Earliest Deadline First, Shortest
Job First, etc.

Problem instance. The problem instance in this model is con-
structed, at any point in time, from the information on task file

descriptions, resource file descriptions and the current state infor-
mation on resources.

Cluster and multi-cluster Grids model. Cluster and multi-cluster
Grids refer to the Grid model in which the system is made up
of several clusters. For instance the cluster Grid of an enterprise
comprises different clusters located at different departments of
the enterprise. One main objective of cluster Grids is to provide
a common computing infrastructure at enterprise or department
levels in which computing services are distributed across different
clusters. Clusters could belong to different enterprises and
institutions; that is, to autonomous sites having their local users
(both local and Grid jobs are run on resources) and usage policies.

The most common scheduling problem in this model is a Grid
scheduler which makes use of local schedulers of the clusters. The
benefit of cluster Grids is to maximize the usage of resources and, at
the same time, increase the throughput for user tasks. This model
has been exploited in Lee and Zomaya [21] for scheduling data-
intensive bag-of-tasks applications.

Problem instance. The problem instance in this model is con-
structed, at any point in time, from the information on task file de-
scriptions; again, it is assumed that the workload of each task is
known a priori. On the other hand, the (multi-)cluster Grid can be
formally represented as a set of clusters, each one with the infor-
mation on its resources. Note that in this model the Grid scheduler
need not to know the information on resources within a cluster nor
the state information or control on every Grid resource. In this way,
it is possible to reduce dependencies on Grid information services
and respect local policies on resource usage.

4.4. Grid system performance and optimization criteria

Several performance requirements and optimization criteria
can be considered for Grid scheduling—the problem is multi-
objective in its general formulation. We could distinguish proper
Grid system performance criteria from scheduling optimization
criteria although both performance and optimization objectives
allow one to establish the overall Grid system performance.

Grid system performance criteria include CPU utilization of
Grid resources, load balancing, system usage, queuing time,
throughput, turnaround time, cumulative throughput, waiting
time and response time. In fact other criteria could also be
considered for characterizing a Grid system’s performance such
as deadlines, missed deadlines, fairness, user priority, resource
failure, etc. Scheduling optimization criteria include makespan,
flowtime, resource utilization, load balancing, matching proximity,
turnaround time, total weighted completion time, lateness,
weighted number of tardy jobs, weighted response time, etc. Both
performance criteria and optimization criteria are desirable for
any Grid system; however, their achievement depends also on
the considered model (batch system, interactive system, etc.).
Importantly, it should be stressed that these criteria could be
conflicting; for instance, minimizing makespan conflicts with
resource usage and response time.

One of the most popular and extensively studied optimization
criteria is the minimization of the makespan. Makespan is an
indicator of the general productivity of the Grid system: small
values of makespan mean that the scheduler is providing good and
efficient planning of tasks to resources. Considering makespan as a
stand-alone criterion does not necessarily imply the optimization
of other objectives. As mentioned above, its optimization could
in fact be to the detriment of other optimization criteria. Another
important optimization criterion is that of flowtime, which refers
to the response time to the user submissions of task executions.
Minimizing the value of flowtime implies reducing the average
response time of the Grid system. Essentially, we want to maximize
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the productivity (throughput) of the Grid and at the same time
we want to obtain planning of tasks to resources that offer an
acceptable QoS.

Makespan, completion time and flowtime. Makespan indicates the
time when finishes the latest task and flowtime is the sum of
finalization times of all the tasks. Formally they can defined as:

e minimization of makespan: ming,esched{MaXjerasks Fj}, and

e minimization of flowtime: mins,esched{)_jcrasks Fil+

where F; denotes the time when task j finalizes, Sched is the set of
all possible schedules and Jobs the set of all jobs to be scheduled.
Note that makespan is not affected by any particular execution
order of tasks in a concrete resource, while in order to minimize
the flowtime, tasks should be executed in ascending order of their
workload.

The completion time of a machine m is defined as the time
in which machine m will finalize the processing of the previous
assigned tasks as well as of those already planned tasks for the
machine. This parameter measures the previous workload of a
machine. Notice that this definition requires knowing both the
ready time for a machine and the expected time to complete of the
tasks assigned to the machine.

The expression of makespan, flowtime and completion time
depends on the computational model. For instance, in the ETC
model, completion[m] is calculated as follows:

completion|m] = ready_times[m] + ETC[j][m]
{jeTasks|schedule[j]=m}

where ready_times[m] is the time when machine m will have
finished the previously assigned tasks.

Makespan can be expressed in terms of the completion time of
aresource, as follows:

makespan = max{completion[i] | i € Machines}.

Similarly, for the flowtime we use the completion times of
machines, by first sorting the tasks in ascending order of their
ETC values. Thus for machine m, flowtime[m] can be expressed as
follows (S[m] is a vector representing the schedule for machine m):

flowtime [m]=0;
completion = ready_times[m];
for (i = 0; i < S[m].size(); ++i) {
completion += ETC[S[m] [i]] [m];
flowtime[m] += completion;

}

In the case of the TPCC model, for a schedule S of makespan M, the
Total Processor Cycle Consumption is expressed as follows:

m [M]-1

33 sl + > (M — (M)sipIl ML,
p=1

p=1 t=0

where m is the total number of Grid resources used in the schedule,
p denotes a processor (resource) and S[p][t] is the speed of
processor during time interval [t, t + 1). Note that there is no direct
relation between the TPCC value and makespan value; however,
the longer the makespan, the larger the value of TPCC, and vice
versa. In other words, it could be established that any schedule
with a good TPCC value is a schedule with a good makespan value
also. In factitis claimed that the set of makespan optimal schedules
is the same as the set of TPCC optimal schedules.

It should be noted that the TPCC model is appropriate not
only for heuristic-based scheduling methods without guarantee
of fitness value of the TPCC but also for approximation®-based
schedulers ensuring a quality of delivered schedule.

2 An approximation algorithm is one that delivers a feasible solution whose
fitness value is within a certain bound of the fitness of the optimal solution.

Resource utilization. Maximizing the resource utilization of the Grid
system is another important objective. This criterion is gaining
importance due to the economic aspects of Grid systems such
as the contribution of resources by individuals or institutions
in exchange for economic benefits. Achieving a high resource
reutilization becomes a challenge in Grid systems given the
disparity of computational resources of the Grid. Indeed, to
increase the benefit of the resource owners, the scheduler
should use all resources, yet this could contradict with the
high-performance criteria since limited resources could be the
bottleneck of the system. It could then be said that from the
resource owners perspective, resource utilization is a QoS criterion.
One possible definition of this parameter is to consider the
average utilization of resources. For instance, in the ETC model, for
a schedule S, it can be defined as follows:
> completionl[i]

{ieMachines}
makespan - nb_machines’
and we aim at maximizing this value over all possible schedules.

Matching proximity. This metric aims at matching the tasks to
resources that best fit them according to desired computational
criteria. Matching proximity is one such facet of the Grid scheduler,
which is usually implicitly pursued. Expressing this criterion
explicitly is more difficult, as compared to other criteria.

In the ETC model, the matching proximity could be defined as
the degree of proximity of a given schedule with regard to the
schedule produced by the Minimum Execution Time (MET) method.
MET assigns a job to the machine having the smallest execution
time for that job. Observe that a large value of matching proximity
means that a large number of jobs is assigned to the machine
that executes them faster. Formally, for a schedule S, the matching
proximity can be computed as follows:

> ETCIi][S[il]

ieTasks

> ETC[i][MET[i]]’
ieTasks
Turnaround time. Turnaround time is a useful criterion when the
(mean) elapsed time of computation, from the submission of
the first task to the completion of the last submitted task, is
to be measured. Dominguez et al. [22] considered this objective
for scheduling bag-of-tasks applications in desktop Grids. This
objective is usually more important in batch scheduling than in
interactive applications. Kondo et al. [23] characterized four real
desktop Grid systems and designed scheduling heuristics based on
resource prioritization, resource exclusion, and task replication for
fast application turnaround.

Total weighted completion time. This criterion is appropriate when
a user’s tasks have priorities. Usually, this criterion is implemented
through weights associated to the tasks [24,25]:

avg_utilization =

matching_proximity =

Total weighted completion time = Z w;F;

JjeTasks

where wj is the priority (weight) of job j and F; denotes the
time when the task j finalizes. As in the case of flowtime, this
criterion can be seen as a QoS to the Grid user. In a similar way
the total weighted tardiness and the weighted number of tardy jobs
are defined for the case of tasks having due dates.

Average weighted response time. In interactive Grid applications,
response time is an important parameter. Let w; be the weight
associated to task j, F; its finalization time and R; its submission
time to the Grid system. This criterion can then be expressed as
follows:
> wi(Ff—Ry)
jeTasks
> W

jeTasks
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where (F; — R)) is the response time of task j. In [26,27], the
response time of a task is weighted by its resource consumption
(long jobs have larger resource consumption than short jobs) to
balance the impact of short jobs versus long jobs with a higher
resource consumption.

Similarly, we can define the average weighted wait time, in
which the wait time is defined as the difference between the
starting time (when job starts execution) and the submission time.

4.5. Multi-objective optimization approaches

As described in the previous subsections, Grid scheduling
is multi-objective in its general formulation. Therefore, the
optimization criteria, when considered together, have to be
combined in such a way that a good tradeoff among them
is achieved. There are several approaches in multi-objective
optimization theory to deal with the multi-criteria condition of the
problem. Among them we could distinguish the hierarchical and
the simultaneous approaches.

Hierarchical approach. This approach is useful to establish priority
among the criteria. For instance, in high-performance computing
we could give more priority to the makespan and less priority
to the response time; yet, if the user requirements are involved,
we could consider the reverse priority. Let ¢;, 1 < i < k be
a set of optimization criteria. In the hierarchic approach, these
criteria are sorted by their priority, in a way that if a criterion ¢;
is of smaller importance than criterion c;, the value for criterion ¢;
cannot be varied while optimizing according to c;. This approach
is especially useful when the criteria are measured in different
units and cannot be combined in a single aggregate objective
function (for instance, optimizing makespan and the number of
tardy tasks). This approach has been considered in Xhafa [28,29]
for independent job scheduling under the ETC model.

Simultaneous approach. In this approach, an optimal planning
is that in which any improvement with respect to a criterion
causes a deterioration with respect to another criterion. Dealing
with many conflicting optimization criteria at the same time
certainly has a high computation cost. It should be addressed
through Pareto optimization theory [30,31]. However, in the Grid
scheduling problem, rather than knowing many Pareto points in
solution space, we could be interested in knowing a schedule
having a tradeoff among the considered criteria and which could
be computed very quickly. Therefore, we can consider a small
number of objectives at the same time, which in general suffices
for practical applications.

In the Pareto optimization theory we could distinguish two
different approaches.

(a) Weighted sum approach: in this case the optimization criteria
are combined in a single aggregate function, which is
then solved via heuristic, meta-heuristic and hybrid
approaches for single-objective problems. There are two
issues here: first, how to combine the different objectives
in a meaningful way in a single-objective function -
in fact this is not always possible - and, second, how
to find suitable values for the weights of the criteria,
which per se introduces new variables to the problem
definition. For practical cases, however, one could fix
a priori the weights either based on user, application,
system performance priority or conduct a tuning process
to identify appropriate values.

(b) General approach: In the general approach the objective
is to efficiently compute the Pareto optimal front
[30,31]. Many classes of meta-heuristic algorithms have
been developed for multi-objective optimization, e.g., the
Multi-objective Genetic Algorithms (MOGA) [32].

As an example let us consider the case (a) when makespan and
flowtime are considered simultaneously. As mentioned before,
the first concern is to combine them into a single meaningful
objective function. Indeed, when summing them up, we have to
take into account that even though makespan and flowtime are
measured in the same time unit, the values they can take are in
incomparable ranges, due to the fact that flowtime has a higher
magnitude order over makespan, and its difference increases as
more jobs and machines are considered in the Grid system. In order
to deal with this we consider the normalized or mean flowtime:
flowtime/nb_machines. Next we have to weight both values to
balance their importance:

fitness = A - makespan + (1 — A) - mean_flowtime.

In Xhafa et al. [33,28,29,34] the value of A is fixed, based on
preliminary tuning, to A = 0.75; that is, more priority is given
to makespan. In many meta-heuristic implementations, it was
observed that this single aggregate objective function shows good
performance and outperforms known approaches in the literature
for independent Grid scheduling.

5. Heuristic and meta-heuristic methods for scheduling in
Grids

From the exposition in the previous sections, it is clear that
the Grid scheduling problem is really challenging. Dealing with
the many constraints and optimization criteria in a dynamic
environment is very complex and computationally hard. Meta-
heuristic approaches are undoubtedly considered the de facto
approach. We now point out the main reasons that explain the
strength of meta-heuristic approaches for designing efficient Grid
schedulers.

e Meta-heuristics are well understood: Meta-heuristics have been
studied for a large number of optimization problems, from
theoretical, practical and experimental perspectives. Certainly,
the known studies, results and experiences with meta-heuristic
approaches are a good starting point for designing meta-
heuristic-based Grid schedulers.

e “No need” for optimal solutions: In the Grid scheduling problem,
for most practical applications good quality planning of jobs
would suffice rather than searching for optimality. In fact,
in the highly dynamic Grid environment, it is not possible
to even define the optimality of planning, as it is defined in
combinatorial optimization. This is so due to the fact that Grid
schedulers run as long as the Grid system exists and thus the
performance is measured not only for particular applications
butalso in the long run. It is well known that meta-heuristics are
able to compute in a short time high-quality feasible solutions.
Therefore, in such situation meta-heuristics are among best
candidates to cope with Grid scheduling.

e Efficient solutions in short time: Research work on meta-
heuristics has by large tried to find ways to avoid getting
stuck in local optima and ensure convergence to suboptimal
or optimal solutions. However, meta-heuristics dispose of
mechanisms that allow one to tune the convergence speed.
For instance, in Genetic Algorithms, by choosing appropriate
genetic operators one can achieve a very fast convergence of
the algorithm to local optima. Similarly, in the Tabu Search
method, one can work with just short-term memory (recency)
in combination with an intensification procedure to produce
high-quality feasible solutions in a very short time. This feature
of meta-heuristics is very useful for Grid schedulers in which we
might want to have a very fast reduction in makespan, flowtime
and other parameters.
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e Dealing with multi-objective nature: Meta-heuristics have proven
to efficiently solve not only single-objective optimization prob-
lems but also multi-objective optimization problems.

e Appropriateness for periodic and batch scheduling: Periodic
scheduling is a particular case of Grid scheduling. It arises often
when companies and users submit their applications to the Grid
system periodically. For instance, a bank may wish to run once
a month an application that processes the log file keeping the
online bank’s clients’ transaction activity. In this case resource
provisioning can be done in the Grid infrastructures and, which
is more important in our context, there are no strong time
restrictions. This means that we can run meta-heuristic-based
schedulers for longer execution times and significantly increase
the quality of planning of jobs to resources. Similarly, in batch
scheduling, we could run the meta-heuristic-based scheduler
for the time interval comprised within two successive batches
activations.

e Appropriateness for decentralized approaches: Since Grid systems
are expected to be large scale, decentralization and coexistence
of many Grid schedulers in the system is desirable. We
could thus have many instances of the meta-heuristic-based
schedulers running in the system which are coordinated by
higher-level schedulers.

e Hybridization with other approaches: Meta-heuristics can be
easily hybridized with other approaches. This is useful to
make Grid schedulers to better respond to concrete Grid types,
specific types of applications, etc. The hybridization in general
can produce better solutions than those delivered by single
approaches.

e Designing robust Grid schedulers: The changeability of the
Grid environment over time is among the factors that
directly influences the performance of the Grid scheduler. A
robust scheduler should deliver high-quality planning even
under frequent changes of the characteristics of the Grid
infrastructure. Evidence in meta-heuristics literature exists that
in general meta-heuristics are robust approaches.

e Libraries and frameworks for meta-heuristics: Many libraries
and frameworks have been developed in the literature for
meta-heuristics, for both single-objective and multi-objective
cases. For instance, the Mallba library [35], Paradiseo [36] and
EasyLocal + + [37] are such libraries. These libraries can be
easily used for the Grid scheduling problem; for instance, the
meta-heuristic approaches in Xhafa et al. [33,28] used skeletons
defined in the Mallba library.

In the following subsections we briefly review the most important
heuristic and meta-heuristic approaches and the benefits of using
them for the Grid scheduling problem (the reader is referred to
[38,39] for a survey on meta-heuristic approaches).

5.1. Local search-based heuristic approaches

Local search [40] is a family of methods that explore the solution
space by starting at an initial solution, and construct a path in
solution space during the search process. Methods in this family
include Hill Climbing (HC), Simulated Annealing (SA) and Tabu
Search (TS), among others.

Simple local search methods (HC-like) are of interest, at least,
for two reasons: (1) they produce a feasible solution of certain
quality within a very short time; and (2) they can be used to
feed (initialize) population-based meta-heuristics with genetically
diverse individuals. Such methods have been studied for the
scheduling under the ETC model in Ritchie and Levine [41].
Xhafa [29] used several local search methods in implementing
Memetic Algorithms (MAs) for the same problem.

SA is more powerful than simple local search by accepting also
worse solutions with certain probability. This method has been

proposed for Grid scheduling by Abraham et al. [42] and Yarkhan
and Dongarra [43].

TS [44] is more sophisticated and usually requires more com-
putation time to reach good solutions. However, its mechanisms
of tabu lists, aspiration criteria, intensification and diversification
make it a very powerful search algorithm. Abraham et al. [42] con-
sidered TS for the problem. Ritchie [45] implemented a TS for the
problem under the ETC model and used it in combination with an
ACO approach. An ant approach is reported also in [46]. Recently,
Xhafa et al. [47] have presented the design, implementation and
evaluation of a full TS for the scheduling under the ETC model,
which outperformed Ritchie’s approach.

We now present the design of simple local search methods for
the Grid scheduling problem.

Design of local search methods for Grid scheduling. Simple local
search methods can be applied straightaway to the Grid schedul-
ing. In fact, many variations of these methods can be designed by
considering different neighborhood structures as well as ways in
which neighboring solutions are visited. For instance, if in each
iteration the best neighboring solution is accepted, we have the
steepest descent version in the minimization case.

e Move-based local search: In this group of methods, the
neighborhood is fixed by moving a task from one resource
to another one. Thus, two solutions are neighbors if they
differ only in a position of their vector of assignments task-
resource. The following methods are obtained: (a) Local Move
(LM) moves a randomly chosen task from its resource to
another randomly chosen resource; (b) Steepest Local Move
(SLM) moves a randomly chosen task to the resource yielding
the largest improvement in optimization criteria; (c) Local MCT
Move (LMCTM) is based on the MCT (Minimum Completion Time)
heuristic. In LMCTM, a task is moved to the resource yielding
the smallest completion time among all the resources; (d) Local
Minimum Flowtime Move (LMFTM) moves a task that yields the
largest reduction in the flowtime.

e Swap-based local search: In this group of methods, the
neighborhood is defined by swapping two tasks of different
resources. This group includes: (a) Local Swap (LS): the
resources of two randomly chosen tasks are swapped; (b)
Steepest Local Swap (SLS): the movement swap yielding the
largest improvement is applied; (c) Local MCT Swap (LMCTS):
in this case, a randomly chosen task t; is swapped with a task
t; so that the maximum completion time of the two implied
resources is the smallest of all possible exchanges; (d) Local MFT
Swap (LMFTS): the exchange of the two tasks yields the largest
reduction in the value of flowtime; and (e) Local Short Hop (LSH):
this method is based on the process of Short Hop [48]. In our
case, pairs of resources are chosen one from the subset of the
most loaded resources and the other from the subset of the
less loaded resources together with the subset of tasks that are
assigned to these resources. In each iteration (hop) the swap
of a task of a most loaded resource with a task assigned to a
less loaded resource is evaluated and accepted if the completion
time of the implied resources is reduced.

e Rebalance-based local search: Load balancing of resources is
used for the neighborhood definition. We can thus design:
(a) Local Rebalance (LR): the movement from a solution to a
neighboring one is done by reducing the load of the most loaded
resources; (b) Deep Local Rebalance (DLR): applies a movement
with the largest improvement in rebalancing; (c) Local Flowtime
Rebalance (LFR): swaps a task from the most loaded resource
and a task of a resource that reduces the value of the flowtime
contributed by the most loaded resource; (d) Emptiest Resource
Rebalance (ERR): in this method the aim is to balance the
workload of the resources but now the less loaded resource
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is used; and (e) Emptiest Resource Flowtime Rebalance (ERFR):
this is similar to the previous method but now the less loaded
resource is considered the one that contributes the smallest
flowtime.

e Variable Neighborhood Search (VNS): In this method a general-
ized concept of neighborhood is considered. The neighborhood
relationship is defined so that two solutions are considered
neighbors if they differ in k positions of their vectors of assign-
ments task-resource, where k is a parameter. This method in
general could yield better solutions, however its computational
cost is higher since the size of the neighborhood is much larger
than in the case of simple neighborhood (for k = 1, VNS is just
the Local Move).

5.2. Population-based heuristic approaches

Population-based heuristics is a large family of methods
that have shown their efficiency for solving combinatorial
optimization problems. Population-based methods usually require
large running times if suboptimal or optimal solutions are to be
found. However, when the objective is to find feasible solutions
of good quality in short execution times, as in the case of Grid
scheduling, we can exploit the inherent mechanisms of these
methods to increase the convergence of the method.

We could distinguish three categories of population-based
methods: Evolutionary Algorithms (Genetic Algorithms (GAs),
Memetic Algorithms (MAs) and their variations), Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO).

GAs for Grid scheduling problems have been addressed by
Abraham et al. [42], Braun et al. [48], Zomaya and Teh [49], Martino
and Mililotti [50], Page and Naughton [51], Gao et al. [52] and Xhafa
et al. [28,53].

MAs [54] is a relatively new class of population-based
methods, which combine the concepts of evolutionary search and
local search. In this sense MAs could be considered as hybrid
evolutionary algorithms; in fact, MAs arose as an attempt to
combine concepts and strategies of different meta-heuristics.
There has been few work on MAs for the Grid scheduling problem.
Xhafa [29] applied unstructured MAs and Xhafa et al. [34] proposed
Cellular MAs (structured MAs) for independent scheduling under
the ETC model.

An ACO implementation for the problem under the ETC model
has been reported by Ritchie [45]. Abraham et al. [55] proposed an
approach for scheduling using a fuzzy PSO algorithm.

Specific methods for population initialization. In population-based
methods, it is important to dispose a wide variety of initialization
methods for the generation of the first population. Typically, the
initial solutions are generated randomly; however, introducing a
few genetically good individuals would be helpful to accelerate
the search. Thus, besides a random method, other specific or ad
hoc methods can be used to generate solutions. We distinguish
Opportunistic Load Balancing (OLB), Minimum Completion Time
(MCT), Minimum Execution Time (MET), Switching Algorithm
(Switch), k-Percent Best (KPB), Min-min, Max-min, Sufferage,
Relative-cost and Longest Job to Fastest Resource-Shortest Job to
Fastest Resource (LJFR-SJFR) [56,57,48,42].

5.3. Hybrid heuristic approaches

Meta-heuristic methods are per se hybrid approaches. For
instance, MAs combine an evolutionary search with a local search.
However, hybridization among different meta-heuristics has been
shown to be effective for many problems by outperforming single
methods [58]. However, hybrid meta-heuristics have been less
explored for the problem. Abraham et al. [42] addressed the

hybridization of GA, SA and TS heuristics; GA+SA hybridization
is expected to have a better convergence than a pure GA search
and GA+TS could improve the efficiency of the GA. In these
hybridizations a heuristic capable to deal with a population of
solutions, such as a GA, is combined with local search heuristics,
such as TS and SA, that deal with only one solution at a time.
Another hybrid approach for the problem is due to Ritchie and
Levine [59], who combine an ACO algorithm with a TS algorithm
for the problem. In [29], a basic unstructured MA is combined
with several local search algorithms in order to identify the best
performance of the resulting MA.

5.4. Other approaches

Many other approaches can be applied to the Grid scheduling
problem. We briefly present them next.

Hyper-heuristic approaches. Hyper-heuristics [60] are methods that
guide the search, at a higher level as compared to meta-heuristics.
Hyper-heuristics have proven to be effective for scheduling and
timetabling (Burke et al. [61]) and are therefore also candidate
approaches for Grid scheduling.

Xhafa [62] presented a simple hyper-heuristic for the problem,
which uses as underlying heuristics a set of ad hoc (immediate
and batch mode) methods for scheduling of jobs to Grid
resources according to the Grid and job characteristics. The hyper-
heuristic is a high-level algorithm, which examines the state and
characteristics of the Grid system, and selects and applies the ad
hoc method that yields the best planning of jobs. The resulting
hyper-heuristic-based scheduler can be thus used to develop
network-aware applications.

Reinforced learning. Perez et al. [63] proposed implementing
Reinforcement Learning for scheduling in large Grid systems.
Vengerov [64] presented a utility-based framework for making re-
peated scheduling decisions dynamically; the observed informa-
tion about unscheduled jobs and the system’s resources is used for
this purpose.

Fuzzy logic, neural networks and QoS approaches. Zhou et al. [65]
used fuzzy logic (FL) techniques to design an adaptive FL scheduler,
which utilizes the FL control technology to select the most
suitable computing node in the Grid environment. A Fuzzy Neural
Network (NN) was proposed by Yu et al. [66] to develop a
high-performance scheduling algorithm. The algorithms uses FL
techniques to evaluate the Grid system load information, and
adopts the NNs to automatically tune the membership functions.
Hao et al. [67] presented a Grid resource selection based on NNs
aiming to achieve QoS. To this end, the authors propose selecting
Grid resources constrained by QoS criteria. The resource selection
problem is solved using NNs.

Economy-based scheduling. Economy-based models are important
for the design of resource management architecture for Grid
systems. Several recent works [68-71] address the resource
allocation through market-oriented approaches. These approaches
are suitable, on the one hand, to exploit the interaction of different
scheduling layers, and on the other, different negotiation and
agreement strategies can be implemented for resource allocation.

Game-theoretic based scheduling. Game-theoretic models are show-
ing their usefulness in the analysis and design of distributed com-
puting and networking algorithms. In particular, there has been
an increasing interest in using game-theoretic models for Grid
scheduling [72]. Recently, Kolodziej and Xhafa [73] have proposed
a game-theoretic and GA model for security-assured scheduling of
independent jobs in Computational Grids.

Grid services scheduling. W3C defined a service as a set of
actions that form a coherent whole from the point of view of
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service providers and service requesters. Although this definition
originated for web systems, services were defined similarly for
Grid systems. There are two aspects related to Grid scheduling
and Grid services: (a) Grid services need to be discovered and
scheduled to appropriate resources: for instance, scheduling a
service in the Grid system to process a requested transaction;
and (b) achieving Grid scheduling functionalities through services.
Several recent research works [74-76] explore these aspects, yet
there is still little research work in this direction.

6. Integration of schedulers into Grid architecture

Job scheduling technologies have made it possible to achieve
the vision of the high-performance Grid by making tractable many
computationally hard problems. Scheduling components, although
crucial and useful components of a Grid, are just part of a larger
system. The complete vision of a Grid is delivered from the com-
bination of several Grid technology domains that achieve the
virtualization: workload virtualization, information virtualization,
system virtualization, storage virtualization, provisioning, negotia-
tion, and orchestration. Therefore, schedulers are just components
of a modular scheduling architecture, coupled with the Grid mid-
dleware that provides access to independent local computational
resource managers [77] (see Fig. 1).

Basic components of Grid scheduling architecture.
The following components have been identified as building
blocks of Grid scheduling architecture [77]:

e Scheduling service: queries for resources and computes a
planning of job(s) to available resources.

e Job supervisor service: monitors job executions.

e Information service: includes both static and dynamic informa-
tion on resources, data, network state, etc.

e Data management service: provides information services with
information on data.

e Network management service: provides information services
with information on networks.

e Accounting and billing service: provides budget information for
allocations, etc.

The integration of schedulers into the Grid architecture repre-
sents one of the major efforts and has thus been addressed in many

Grid computing projects. We exemplify next the integration ap-
proach through two most paradigmatic Grid computing projects,
namely Globus and EGEE Grid Computing. Other examples include
UNICORE/ARC [78] (from NorduGrid).

The Grid Resource Allocation Services of Globus Grid. Grid Resource
Allocation Services Package (GRASP) is part of the Globus Toolkit
in charge of resource management. GRASP is actually seen as an
upper level of job submission and scheduling system (see Fig. 2).

glite Workload Management System of EGEE Grid Computing.
Enabling Grids for E-sciencE (EGEE) is a large, EU-funded
Grid computing project. The EGEE project provides large-scale
computing infrastructure for researchers conducting studies in
data-intensive and computing-intensive applications from high-
energy physics, earth and life sciences.

One key part of the EGEE Grid project is the gLite middleware,
which includes also the Workload Management System (WMS).
The gLite WMS [79] (see Fig. 3 for its architecture) can be seen
as a collection of components responsible for distributing and
managing users’ jobs onto computing and storage of available Grid
resources.

The interfaces of gLite WMS facilitate the submission process
of the end-user, on the one hand, by hiding the complexities
of communicating with a highly heterogeneous and dynamic
infrastructure, and on the other, by managing task recovery in the
case of failure. Several job types, such as batch, DAG workflow,
parametric and interactive, are supported by gLite WMS. The
gLite WMS has been tested very intensively for ATLAS project
experiments (simulated data for physics studies), and showed
good performance and reliability [80].

7. Further issues

Besides the many aspects and facets of the Grid scheduling
problem presented in the previous sections, there still remain
other issues to be considered. We briefly mention some of them
here.

Security is an important aspect to be considered in Grid
scheduling. It can be seen as a two-fold objective: tasks could have
security requirements to be allocated in secure nodes, while the
node itself could have security requirements; that is, the tasks
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running in the resource will not “watch” or access other data in
the node. It should be noted that current security approaches are
treated at different levels of Grid systems and independently of the
Grid schedulers. It is challenging to incorporate the security/trust
level as one of the objectives of the scheduling by using trust values
that range from very untrustworthy to very trustworthy scale.
Moreover, the objective is to reduce the possible overhead to the
Grid scheduler that would introduce a secure scheduling approach.

Other important issues are related to data-aware schedul-
ing [81]. Most current Grid approaches are task-oriented or
resource-oriented approaches. For instance, tasks are assumed to
include all data needed for its computation or tasks are just the
processes and data is assumed to be available in Grid nodes. How-
ever, with the ever-increasing complexity of large-scale problems
in which both tasks and data are to be scheduled, an integrated
scheduling approach that would optimize allocation of both the
task and the data is required.

8. Conclusions

In this paper, we have surveyed the most important concepts
from Grid computing related to scheduling problems, their reso-
lution using heuristic and meta-heuristic approaches and the in-
tegration of Grid schedulers into Grid architectures. After intro-
ducing a few important Grid types that have appeared in the

Grid computing domain, we identify different types of schedul-
ing based on different criteria, such as static versus dynamic en-
vironment, multi-objectivity, adaptivity, etc. Our study revealed
the complexity of the scheduling problem in computational Grids
when compared to scheduling in classical parallel and distributed
systems and shows the usefulness of heuristic and meta-heuristic
approaches for the design of efficient Grid schedulers. We have
reasoned about the importance and usefulness of meta-heuristic
approaches for the design of efficient Grid schedulers when con-
sidering the scheduling as a multi-objective optimization problem.
Also, a few other approaches and current research issues in the
context of Grid scheduling are discussed.
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