
A GA(TS) Hybrid Algorithm for Scheduling in
Computational Grids

Fatos Xhafa1, Juan A. Gonzalez1, Keshav P. Dahal2, and Ajith Abraham3

1 Department of Languages and Informatics Systems
Technical University of Catalonia, Barcelona, Spain

fatos@lsi.upc.edu
2 School of Informatics, University of Bradford, UK

k.p.dahal@Bradford.ac.uk
3 Center of Excellence for Quantifiable Quality of Service
Norwegian University of Science and Technology, Norway

ajith.abraham@ieee.org

Abstract. The hybridization of heuristics methods aims at exploring
the synergies among stand alone heuristics in order to achieve better re-
sults for the optimization problem under study. In this paper we present
a hybridization of Genetic Algorithms (GAs) and Tabu Search (TS)
for scheduling in computational grids. The purpose in hybridizing these
heuristics is to benefit the exploration of the solution space by a popu-
lation of individuals with the exploitation of solutions through a smart
search of the TS. Our GA(TS) hybrid algorithm runs the GA as the
main algorithm and calls TS procedure to improve individuals of the
population. We evaluated the proposed hybrid algorithm using different
Grid scenarios generated by a Grid simulator. The computational results
showed that the hybrid algorithm outperforms both the GA and TS for
the makespan value but cannot outperform them for the flowtime of the
scheduling.

1 Introduction

Meta-heuristics are the de facto approach to cope in practice with the computa-
tionally hard optimization problems. Meta-heuristics are in fact hybrid in their
nature since they consist of a high level algorithm that guides the search us-
ing other particular methods. For instance, in population based meta-heuristics,
such as Genetic Algorithms, the solution space is explored through a population
of individuals and there are used methods for generating the initial population,
computing the fitness of individuals as well genetic operators to transmit the
genetic information from parents to offsprings.

Besides using meta-heuristics as stand alone approaches for solving hard
combinatorial optimization problems, during the last years, the attention of re-
searchers has shifted to consider another type of high level algorithms, namely
hybrid algorithms. These algorithms do not follow any concrete meta-heuristic,
but rather they combine other meta-heuristics and/or other methods (e.g. exact
methods) yielding thus hybrid meta-heuristics.

The rationale behind the hybridization resides in the “no free lunch the-
orem” [16] stating that “... all algorithms that search for an extremum of a
cost function perform exactly the same, when averaged over all possible cost
functions. In particular, if algorithm A outperforms algorithm B on some cost
functions, then loosely speaking there must exist exactly as many other functions
where B outperforms A.” Essentially, the theorem states that there is no any
search method for optimization which outperforms all other search methods.
This suggests that one can use existing algorithms as components for designing
new efficient search algorithms and expect improved performance of the newly
obtained algorithm for some cost functions.

There are at least two major issues in designing hybrid meta-heuristics: (a)
how to choose the (existing) heuristic methods to combine, and (b) how to com-
bine the chosen heuristic methods into new hybrid approaches. Unfortunately,
there are no theoretical foundations for these issues. For the former, different
classes of search algorithms can be considered for the purposes of hybridization,
such as exact methods, simple heuristic methods (ad hoc methods) and meta-
heuristics. Moreover, meta-heuristics themselves are classified into local search
based methods, population based methods and other classes of nature inspired
meta-heuristics. Therefore, in principle, one could combine any methods from the
same class or methods from different classes. Regarding the later, there are some
attempts for taxonomies of hybrid meta-heuristics [8, 5]; in fact, the common ap-
proach is to try out in smart ways, based on domain knowledge of problem at
hand and characteristics of heuristics methods, different hybrid approaches and
shed light on the performance of the hybrid approach through empirical studies.
Frameworks that facilitate the fast prototyping have been also provided in the
meta-heuristics literature [2, 4].

In this paper, we present a hybrid algorithm for the problem of scheduling
independent tasks in computational grids. A computational grid is a distributed
infrastructure of computational resources (hardware, software, data storages,
etc.) highly heterogenous, interconnected through heterogenous networks. One
key issues in Grids is to design efficient schedulers, which will be used as part of
middleware services to provide efficient planning of users’ tasks to grid nodes.

Recently, heuristic approaches have been presented for the problem [1, 7, 9,
11, 10, 12], however, proper hybrid approaches are lacking. Our hybrid approach
combines Genetic Algorithms (GAs) and Tabu Search (TS) methods. Roughly,
our hybrid algorithm runs the GA as the main algorithm and calls TS procedure
to improve individuals of the population. Our hybrid algorithms deals with the
scheduling problem as a bi-objective optimization problem, in which makespan is
considered a primary objective and flowtime a secondary one. Such optimization
scheme is usually referred to as hierarchic optimization. The proposed algorithm
has been experimentally evaluated and the results are contrasted against both
GAs and TS for the problem.

The rest of the paper is organized as follows. In Section 2, we briefly present
the scheduling of independent tasks considered as a bi-objective optimization
problem in this work. In Section 3, types of hybridizations are presented. The

GAs and TS for the problem as well as the hybrid approach are given in Section 4.
The experimental study and some computational results are given in Section 5.
We conclude in Section 6 with some remarks and indications for future work.

2 Scheduling of independent tasks in computational grids

Many applications are being developed to be run in computational grids to ben-
efit from the large amount of computational resources in such systems. In simple
Grid systems such as enteprise grids or campus grids, the user can use queuing
systems such as Condor or Sun Grid Engine; even, manual selection of the ap-
propriate machines for running the application is possible in such grids. In large
scale and highly heterogenous grids, however, this tedious task is automatically
handled by grid schedulers, which are expected to find planning of users’ tasks
and applications to most appropriate machines.

One class of grid schedulers are batch schedulers, that is, schedulers that
compute a planning of a set of tasks/applications altogether to a set of grid
nodes. Meta-heuristic approaches are useful for the design of such schedulers,
since they usually provide quality solutions in short times.

In this work we are interested in scheduling of independent tasks to grid
resources. The formal definition of the problem is based on the definition of the
Expected Time to Compute (ETC) matrix in which ETC[j][m] indicates an
estimation of how long will it take to complete task j using resource m. Under
the ETC matrix model, the independent scheduling can be defined as follows:

– A number of independent tasks to be allocated to grid resources. Each task
has to be processed entirely in a single resource and is not preempted (once
started, a task runs until completion).

– A number of machines candidates to participate in the allocation of tasks.
– The workload (in millions of instructions) of each task.
– The computing capacity of each machine (in Mips).
– The ready times, denoted readym, indicating when machine m will have

finished the previously assigned tasks. At the beginning, usually ready times
are considered equal to zero (all machines in the machine set are available
for task allocation).

– The ETC matrix of size nb tasks × nb machines, where ETC[j][m] is the
value of the expected time to compute of task j in machine m.

The quality of a schedule can be measured using several optimization criteria,
such as minimizing the makespan (that is, the finishing time of the latest task),
the flowtime (i.e., the sum of finalization times of all the tasks), the completion
time of tasks in every machine (closely related to makespan), or maximizing the
resource utilization. In this work we consider that the most important criterion
is that of minimizing the makespan. Additionally, we consider the minimization
of the flowtime of the grid system as a secondary criterion. These two crite-
ria are formally defined as follows: makespan: minSi∈Sched{maxj∈Tasks Fj} and,
flowtime: minSi∈Sched{

∑
j∈Tasks Fj}, where Fj denotes the time when task j

finalizes and Sched is the set of all possible schedules. Notice that by consid-
ering the makespan as the main objective to optimize and the flowtime as a
secundary goal, we aim at designing a hierarchical algorithm, in which the value
for makespan can not be worsened when optimizing the flowtime.

3 Hybridization of meta-heuristics

As mentioned earlier, the hybridization started as an approach that tries to
combine fully or partially two or more algorithms to enhance the performance
of stand alone search method for optimization problems. To achieve such goal,
the hybridization should be able to embed the best features of the combined
algorithms into a new high level algorithm.

Current hybrid models take into account two main aspects: (1) Type of
methods to hybridize, and (2) Level of hybridization. The first refers to the
type of the methods to be hybridized. Essentially we could consider two cases:
(a) meta-heuristics + meta-heuristics and (b) meta-heuristics + specific search
method. In the first case the components are meta-heuristics while in the later,
a meta-heuristic is combined with another type of search method, which could
be an exact algorithm, dynamic programming, constraint programming or other
AI techniques. In this work we are considering the first case, being the meta-
heuristics the GAs and TS method.

The level of hybridization, on the other hand, refers to the degree of coupling
between the meta-heuristics, the execution sequence and the control strategy.
Level of hybridization. Loosely coupled : in this case the hybridized meta-
heuristics preserve their identity, namely, their flow is fully used in the hybridiza-
tion. This case is also referred to as high level of hybridization. Strongly coupled :
in this case, the hybridized meta-heuristics inter-change their inner procedures,
resulting in a low level of hybridization.
Execution sequence. Sequential (the meta-heuristics flows are run sequen-
tially) or Parallel (the meta-heuristics flows are run in parallel.)
Control strategy. Coercive: the main flow is that of one of the meta-heuristics,
the other meta-heuristics flow is subordinated to the main flow. Cooperative: the
meta-heuristics explore the solution space cooperatively (eventually, they can
explore different parts of the solution space.)

4 The proposed GA(TS) hybrid approach

For the design of our hybrid approach we consider two well-known meta-heuristics:
Genetic Algorithms (GAs) and Tabu Search (TS). Both GAs and TS have been
developed for the independent task scheduling in Xhafa et al. [11] and [12] in
sequential setting. We have considered the Steady-State GA in this work. The
choice of these two meta-heuristics is based on the following observations. First,
grid schedulers should be very fast in order to adapt to dynamic nature of compu-
tational grids. Therefore, a fast convergence of the main algorithm is preferable

in this case, which can be achieved through a good tradeoff between exploration
and exploitation of the search. Second, in order to achieve high quality planning
in a very short time, it is suggestive to combine the exploration of the solution
space by a population of individuals with the exploitation of neighborhoods of
solutions through local search. In such case, GAs and TS are among the best
representatives of population based and local search methods, respectively.

We are thus considering the case of hybridization of two meta-heuristics
running in sequential environment. We have considered a low level hybridization
and the coercive control strategy. Roughly, our hybrid algorithm runs the GA
as the main algorithm and calls TS to improve individuals of the population.

The hybridization scheme is shown in Figure 1. It should be noted that in the
hybridization scheme in Figure 1, instead of replacing the mutation procedure of
GAs by the TS procedure, we have added a new function to the GA Population
class (namely apply TabuSearch) for applying the TS. This new function could
be applied to any individual of the current population, however, this is compu-
tationally costly. In our case, given that we want to run the Grid scheduler in
short times, the apply TabuSearch is applied with small probability4. In fact,
this parameter can well be used to tune the convergence of the GA since TS
usually provides substantial improvements to individuals.

 Fig. 1. The hybrid GA(TS) scheme.

We shortly present next both the GA and TS meta-heuristics for independent
task scheduling in computational grids (refer to [11] and [12] for details.)

4.1 GAs for the scheduling problem in Grids

GAs are a population-based approaches where individuals represent possible so-
lutions, which are successively evaluated, selected, crossed, mutated and replaced
by simulating the Darwinian evolution found in nature. We have implemented
the Steady State version of GAs. In Steady State GAs, a few good individu-
als of population are selected and crossed. Then, the worst individuals of the
population are replaced by the newly generated descendants; the rest of the in-
dividuals of the population survive and pass to the next generation. The rest of
genetic operators and methods are as follows: Initialization methods are MCT
and LJFR-SJFR implemented in [14, 15]; Selection operator : Linear ranking;
4 This is a user input parameter. For the purposes of this work, apply TabuSearch is

applied roughly to 30% of individuals

Table 1. Simulators’ configuration.

 Small Medium Large

Init./Total hosts 32 64 128

Mips n(1000, 175)

Init./Total tasks 512 1024 2048

Workload n(250000000, 43750000)

Host selection All

Task selection All

Local policy SPTF

Number of runs 30

Crossover operator : Cycle Crossover (CX); Mutation operator : Mutate Rebal-
ancing. The concrete values for the rest of parameters are given in Section 5.

4.2 Tabu Search for the scheduling problem in Grids

Tabu Search (TS) has shown its effectiveness in a broad range of combinato-
rial optimization problems and distinguishes for its flexibility in exploiting do-
main/problem knowledge. The main procedures used in TS are summarized next.
The initial solution is found using Min-Min method [14]. Regarding historical
memory, both short and long term memories have been used in TS algorithm.
For the recency memory, a matrix TL (nb tasks×nb machines) is used to main-
tain the tabu status. In addition, a tabu hash table (TH) is maintained in order
to further filter the tabu solutions. The neighborhood exploration is done using a
steepest descent - mildest ascent method using two types of movements, namely,
transfer (moves a task from a machine to another one, appropriately chosen) and
swap (two tasks assigned to two different machines are swapped). Further, sev-
eral aspiration criteria are used to remove the tabu status of movements. They
are defined using the fitness of solutions as well as information from recency ma-
trix. Intensification is implemented using elite solutions while soft diversification
uses penalties to ETC values, task distribution and task freezing. Finally, strong
diversification is implemented using large perturbations of solutions.

The concrete values for the rest of parameters are given in Section 5.

5 Experimental study

We have used a Grid simulator [13] to evaluate our hybrid algorithm.

Simulation environment setting. For the evaluation of the GA(TS) hybrid algo-
rithm, we have used three Grid scenarios: small, medium and large size. They
consist, respectively, of 32 hosts/521 machines, 64 hosts/1024 machines, and 128
hosts / 2048 machines. Each scenario is generated from the simulator but the
number of tasks and machines are kept constant, that is, for both of them, respec-
tively, the number of initial tasks equals the total number of tasks in the system
and and the initial number of machines equals the total number of machines.

The configuration of simulator follows the parameters given in Table 1. In the
table n(·,·) refers to normal distribution; SPTF stands for Shortest Processing

Time First local policy. The parameter values of the GA and TS algorithms used
in the hybrid algorithm are given in Tables 2 and 3.

Table 2. Parameter values of GA.

Parameter Value

evolution steps 20 · nb tasks
population size 4 · (log2(nb tasks)− 1)
intermediate pop. (pop size)/3
cross probab. 1.0
mutation probab. 0.4

Table 3. Parameter values of TS.

Parameter Value

#iterations nb tasks · nb mach
max. tabu status 1.5 · nb mach
#repetitions
before activating 4 ∗ ln(nb tasks)·
intensific./diversific. ln(nb mach)
#iterations per
intensific./diversific. log2(nb tasks)
#iterations max tabu/2−
for aspiration criteria − log2(max tabu)

Computational results and evaluation. The simulator is run5 30 times for each
scenario and computational results for makespan and flowtime are averaged.
Standard deviation (at 95% confidence interval) is also reported. The results for
makespan and flowtime are given in Table 4 and Table 5, resp.

Table 4. Makespan values.

 Small Medium Large

GA (hierarchic) 2808662.116 2760024.390 2764455.222
 ± 1,795% ±1,010% ±0,745%

TS (hierarchic) 2805531.301 2752355.018 2748878.934

 ± 1,829% ±1,056% ±0,669%
GA(TS)

(hierarchic) 2805519.428 2751989.166 2812776.300
 ± 1,829% ±1,058% ±1,176%

Table 5. Flowtime values.

 Small Medium Large

GA (hierarchic) 709845463.699 1405493291.442 2811723598.025
 ± 1,209% ±0,655% ±0,487%

TS (hierarchic) 710189541.278 1408001699.550 2812229021.221
 ± 1,124% ±0,616% ±0,455%

GA(TS)
(hierarchic) 711183944.069 1409127007.870 2811605453.116

 ± 1,174% ±0,604% ±0,465%

As can be seen from Table 4, for makespan value the GA(TS) outperforms
both GA and TS for small and medium size grid scenarios but achieves worse
value for large size scenario. On the other hand, from Table 5, we can see that
GA(TS) performs better than both GA and TS for flowtime value only for large
size instances. So, GA(TS) performs better for makespan value, which is consid-
ered primary objective in hierarchic version, than for flowtime parameter, which
is a secondary objective. In fact, close to (sub-)optimal solutions, makespan and
flowtime behave as contradictory objectives and thus under our hierarchic model,
the improvements of flowtime are difficult to happen.

6 Conclusions

In this paper we have presented a hybrid GA(TS) algorithm for the problem of
independent scheduling in computational grids. The hybridization follows a low
level approach in which GA is the main flow and TS is subordinated to it. The
5 AMD Athlon 64 3200+, 2GB RAM.

objective function considered is that of bi-objective in which makespan is primary
objective and flowtime is secondary. The experimental evaluation showed that
GA(TS) outperforms both GA and TS for makespan values of small and medium
size grid scenarios and for flowtime values of large size grid scenarios.

The GA(TS) hybridization scheme is very appropriate for parallel implemen-
tation, by running TS method to all individuals of GA population in parallel.

References

1. A. Abraham, R. Buyya, and B. Nath. Nature’s heuristics for scheduling jobs
on computational grids. In The 8th IEEE International Conference on Advanced
Computing and Communications, India, 2000.

2. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, C. León,
G. Luque, J. Petit, C. Rodŕıguez, A. Rojas, and F. Xhafa. Efficient parallel
LAN/WAN algorithms for optimization. The Mallba project. Parallel Comput-
ing, 32(5-6):415–440, 2006.

3. T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, and B. Yao. A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing, 61(6):810–837 (2001).

4. S. Cahon, N. Melab and E. Talbi. Building with paradisEO reusable parallel and
distributed evolutionary algorithms. Parallel Computing 30, 5-6, 677-697, 2004.

5. L. Jourdan, M. Basseur and E. Talbi. Hybridizing Exact Method and Metaheuris-
tics: A Taxonomy. European Journal of Operational Research, (Online, 2008).

6. H.C. Lau, W.C. Wan, M.K. Lim, and S. Halim. A Development Framework for
Rapid Meta-Heuristics Hybridization. In Proc. of the 28th Annual International
Computer Software and Applications Conference, 362-367, 2004.

7. G. Ritchie and J. Levine. A fast, effective local search for scheduling independent
jobs in heterogeneous computing environments. TechRep, Centre for Intelligent
Systems, University of Edinburgh, 2003.

8. E. Talbi. A Taxonomy of Hybrid Metaheuristics. J. of Heur. 8(5), 541-564, 2002.
9. F. Xhafa. A Hybrid Evolutionary Heuristic for Job Scheduling in Computational

Grids. Springer Series: Studies in Comp. Intell., Vol. 75, Chap. 10, 2007.
10. F. Xhafa, L. Barolli, and A. Durresi, An Experimental Study on Genetic Algo-

rithms for Resource Allocation on Grid Systems, JOIN 8(4), 427 - 443, 2007.
11. F. Xhafa, J. Carretero, A. Abraham. Genetic Algorithm Based Schedulers for Grid

Computing Systems. International Journal of Innovative Computing, Information
and Control, Vol. 3, No.5, pp. 1-19, 2007.

12. F. Xhafa, J. Carretero, B. Dorronsoro and E. Alba. Tabu Search Algorithm for
Scheduling Independent Jobs in Computational Grids. Computers and Informatics,
2009. To appear.

13. F. Xhafa, J. Carretero, L. Barolli and A. Durresi. Requirements for an Event-Based
Simulation Package for Grid Systems. JOIN, 8(2):163-178, 2007.

14. F. Xhafa, J. Carretero, L. Barolli and A. Durresi. Immediate Mode Scheduling in
Grid Systems. Int. J. of Web and Grid Services, Vol.3 No.2, 219-236, 2007.

15. F. Xhafa, L. Barolli and A. Durresi. Batch Mode Schedulers for Grid Systems.
International Journal of Web and Grid Services, Vol. 3, No. 1, 19-37, 2007.

16. D.H. Wolpert, W.G. Macready. No Free Lunch Theorems for Optimization, IEEE
Transactions on Evolutionary Computation 1(1), 67-82, 1997.

