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Abstract 
This paper proposes a new approach for multicriteria 

optimization which aggregates the objective functions and 

uses a line search method in order to locate an approximate 

efficient point. Once the first Pareto solution is obtained, a 

simplified version of the former one is used in the context 

of Pareto dominance to obtain a set of efficient points, 

which will assure a thorough distribution of solutions on 

the Pareto frontier. In the current form, the proposed 

technique is well suitable for problems having multiple 

objectives (it is not limited to bi-objective problems) and 

require the functions to be continuous twice differentiable. 

In order to assess the effectiveness of this approach, some 

experiments were performed and compared with two recent 

well known population-based meta-heuristics. When 

compared to the population-based meta-heuristic, the 

proposed approach not only assures a better convergence to 

the Pareto frontier but also illustrates a good distribution of 

solutions. We propose a fuzzy logic controller to adapt the 

parameter required to control the distribution of solutions in 

the spreading phase. Our goal is to find a good distribution 

of solutions as quick as possible. From a computational 

point of view, both stages of the line search converge 

within a short time (average about 150 milliseconds for the 

first stage and about 20 milliseconds for the second stage). 

Apart from this, the proposed technique is very simple, 

easy to implement to solve multiobjective problems. 

 

1. Introduction 
 
The field of multicriteria programming abounds in methods 

for dealing with different kind of problems. Nevertheless, 

there is still space for new approaches, which can better 

deal with some of the difficulties encountered by the 

existing approaches. There are two main classes of 

approaches suitable for multiobjective optimization: 

scalarization methods and nonscalarizing methods. These 

approaches convert the Multiobjective Optimization 

Problem (MOP) into a Single Objective Optimization 

Problem (SOP), a sequence of SOPs, or into another MOP. 

There are several scalarization methods reported in the 

literature: weighted sum approach, weighted t-th power 

approach, weighted quadratic approach, e-constraint 

approach, elastic constraint approach, Benson approach, 

etc. are some of them [5]. Since the standard weighted sum 

encounters some difficulties, several other methods have 

been proposed to overcome the major drawbacks of this 

method. These include: Compromise Programming [4], 

Physical Programming [9][10], Normal Boundary 

Intersection (NBI) [1], and the Normal Constraint (NC) [11] 

methods. There is also a huge amount of work reported on 

population-based mataheuristics for MOP [5].  

In this paper, we propose a new approach which 

uses a scalarization of the objectives in a way similar to the 

weighted t-th power approach (where t is 2 and the 

coefficients values are 1). A line search based technique is 

used to obtain an efficient solution. Starting with this 

solution, a set of efficient points are further generated, 

which are widely distributed along the Pareto frontier using 

again a line search based method but involving Pareto 

dominance relationship. Empirical and graphical results and 

illustrations obtained by the proposed approach are 

compared with two well known population based 

metaheuristics namely ParEGO [8]  and NSGA II [2].  

The paper is structured as follows: in Section 2 the 

proposed modified Line Search is presented. Numerical 

experiments are performed in Section 3. A set of 3 

multiobjective optimizations problems are considered. 

Conclusions and further research plans are presented in 

Section 4. 

 

2. Generating Pareto Front Using Line Search  
 
The Line Search (LS) [6] is a standard and well established 

optimization technique. The standard line search technique 

is modified in this paper so that it is able to generate the set 

of non-dominated solutions for a MOP. The approach 

proposed comprises of two phases: first, the problem is 

transformed into a SOP and a solution is found using a line 

search based approach. This is called as convergence phase. 

Second, a set of Pareto solutions are generated starting with 

the solution obtained at the end of convergence phase. This 

is called as spreading phase.  The convergence and 

spreading phases are described below.  

 

Consider the MOP formulated as follows: 

Let ℜm
 and ℜn

 be Euclidean vector spaces referred to as the 

decision space and the objective space. Let X⊂ℜm
 be a 

feasible set and let f be a vector-valued objective function f: 

ℜm
 →ℜn

 composed of n real-valued objective functions 

f=(f1, f2,…, fn), where fk: ℜ
m
 →ℜ, for k=1,2,…, n. A MOP 

is given by: 

min (f1(x), f2(x),…, fn(x)), 

subject to x∈X. 

 

2.1 Convergence Phase 
The MOP is transformed into a SOP by aggregating the 

objectives using an approach similar to the weighted t-th 

power approach. We consider t = 2 and the values of 

weights equal to 1. The obtained SOP is: 
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subject to x∈X. 

 

The value of t must be an odd number if there are negative 

objective functions among the functions to optimize. The 

smallest odd value suggested is 3. A modified line search 

method is used to find the optimum of this problem. The 

modification proposed in this paper for the standard line 

search technique refers to direction and step setting. After a 

given number of iterations, the process is restarted by 

reconsidering other arbitrary starting point which is 

generated by taking into account the result obtained at the 

end of previous set of iterations. It was found that the usage 

of a random number (between -1 and 1) for the direction 

helped to obtain overall very good performance for the 

entire considered test functions. The step is set as follows: 

αk=2+
12

3
2 +k

     (1) 

where k refers to the iteration number. The modified line 

search technique is summarized as follows: 

Solution for the iteration k+1 is given by: 

kk
k
i

k
i pxx α⋅+=+1 . 

If F(
1+k

x )<F(
k

x ) then 
1+k

x =
k

x , which means that a 

movement to the new generated point will be done only if 

there is an improvement in the quality of the function. A 

number of iterations are performed. At the end of this set of 

iterations the bounds of the definition domain are re-defined 

by following the rule: 

For each dimension i of the point x, the first partial 

derivative with respect to this dimension is calculated. This 

means the gradient of the objective function is calculated 

which is denoted by g. Taking this into account, the bounds 

of the definition domain for each dimension are re-

calculated as follows: 

if gi = 0>
∂

∂

ix

F
then upper bound =xi; 

if gi = 0<
∂

∂

ix

F
then lower bound =xi 

The search process is re-started by re-initializing a new 

arbitrary point between the newly obtained boundaries. 

 
2.2 Spreading phase 

 

At the end of the convergence phase, a solution is obtained. 

This solution is considered as an efficient (or Pareto) 
solution. During this phase and taking into account of the 

existing solution, more efficient solutions are to be 

generated so as to have a thorough distribution of all several 

good solutions along the Pareto frontier. In this respect, the 

line search technique is made use of to generate one 

solution at the end of each set of iterations. This procedure 
is applied several times in order to obtain a larger set of 

non-dominated solutions. All the nondominated solutions 

generated so far are stored. The line search is applied for 

one solution and one dimension of this solution at one time. 

If the new solution is nondominated with respect to the 

entire set of nondominated solutions found then this 

solution is also added. Otherwise this solution is discarded. 

The fuzzy logic controller is used to set the value of α. The 
procedure is repeated until a set on nondominated solutions 

of a required size is obtained. In our experiments the size of 
this set is 100.  Note that this procedure is very fast and it 

takes less than 20 milliseconds to obtain 100 non-

dominated solutions. 

 

2.2.1 Estimating the Value of αααα using a Fuzzy Logic 

Controller 

 
The performance of the line search algorithm is correlated 

to directly with its careful selection of α value. The use of 

fuzzy logic controller to adapt the α value is useful to 

improve the performance. An FLC is composed by a 

knowledge base, that includes the information given by the 

expert in the form of linguistic control rules, a fuzzification 

interface, which has the effect of transforming crisp data 

into fuzzy sets, an inference system, that uses them together 

with the knowledge base to make inference by means of a 
reasoning method, and a defuzzification interface, that 

translates the fuzzy control action thus obtained to a real 

control action using a defuzzification method. The generic 

structure of an FLC is shown in Figure 1. 

 
 

Figure 1. Generic structure of an FLC 

 
In order to set an adequate value for α so that the solutions 
will have a good distribution on the Pareto front, the 

procedure is as follows: 

• Select a sample set of solutions uniform distributed on the 

Pareto front (denoted by SPS) of size equal to the size of 

the approximation set obtained by the our approach. 

• For each point from the approximation set obtained by 

our approach identify the closest point in SPS.  

• Mark each such identified point from SPS. 

• Set the value of distribution indices (Di) as being equal to 

the number of marked points from SPS. 

Our strategy for updating the α value is to consider the 
changes of the value of maximum distribution indices (Dim) 

and average distribution indices (Dia) in two continuous 

iterations. The performance may be measured using two 

error indices. 
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Where t is time step, 

Dim(t) is the maximum distribution index at iteration t, 

Dia(t) is the average distribution index at iteration t, 

Dia(t-1) is the average distribution index at iteration (t-1).  

A two-dimensional FLC system is used, in which there are 

two parameters e1 and e2. The membership functions are 

shown in Figure 2, where NL is Negative large, NS is 

Negative small, ZE is Zero, PS is Positive small, PL is 

Positive large. For the control performance, the output α(t) 
of the fuzzy logic controller is translated using fuzzy if-then 

rules as illustrated in Table 1. Center of gravity is used as 

defuzzification method. Then we use the crisp value to 

modify the parameters α as follows: 

α (t) = α (t -1) + ∆α  

 
Figure 2. Membership functions. (a) for e1 (b) e2   (c) for 

∆α 

 
 

Table 1. Fuzzy rules for ∆α 

 
Figure 3. Illustration of Pareto approximation 

 
 

For applying the procedure described above, the Pareto 

front it is supposed to be known (and this is the case in all 

our experiments considered). In Figure 3, two 

approximation sets A and B and a sample set of Pareto 

points (SPS) of size 10 are considered. The value of Di for 

the set A is 6 (which means 6 solutions from the SPS are 

marked) while the value of Di for the set B is 10. This 

means set B is obtaining a better distribution on the Pareto 

front than the set A. 

3. Experiments and Comparisons 
 
In order to assess the performance of LS, some experiments 

were performed using some well known bi-objective test 

functions, which are adapted from [3], [7]. These test 

functions were also used by the authors of ParEGO [8] and 

NSGA II [2]. Details about implementation of these two 

techniques may be obtained from [2] and [8]. Parameters 

used by ParEGO and NSGA II (given in Table 2) and the 

results obtained by these two techniques are adapted from 

[8]. A set of 100 non-dominated solutions obtained by LS, 

ParEGO, NSGA II is compared in terms of dominance and 

convergence to the Pareto set. For the first comparison, two 

indices were computed for each set of two comparisons: 

number of solution obtained by the first technique which 

dominate solutions obtained by the second technique and 

number of solutions obtained by the first technique which 

are dominated by the solutions obtained by the second 

technique. For two sets of A and B of solutions, which are 

compared, indices are denoted by Dominate(A, B) and 

Dominated(A, B) respectively. Visualization plots are used 

to illustrate the distribution of solutions on the Pareto 

frontier. LGP uses only three parameters:  

- number of re-starts: 20 (10 for KNO1); 

- number of iteration per each re-start: 10; 

- α for the spreading phase (which is set 

independent for each test function and determined 

as per Table 1).   

Test function KNO1 

This test function has two variables and two objectives. It is 

given by: 

minimize  f1 = 20 – r⋅ cos(φ) 

minimize  f2 = 20 – r⋅ sin(φ) 

where  

)2)(2sin(5
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The distance from the Pareto front is controlled by r and is 

a function of the sum of the decision variables. The location 

transverse to the Pareto front is controlled by the difference 

between the decision variables. Pareto set consists of all 

pairs whose sum is 4.4116. There are 15 local Pareto fronts 

and the true Pareto front lies just beyond a local Pareto front 

which has a larger basin of attraction. The convergence to 

the Pareto frontier and the distribution of solutions obtained 

by LS, ParEGO and NSGA II for the test function DTLZ1a 

is depicted in Figure 4.  
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ParEGO NSGA II 

Parameter Value Parameter Value 

Initial population in latin 

hypercube 

11d – 1 Population size 20 

Total maximum evaluations 250 Maximum generations 13 

Number of scalarizing vectors 11 for 2 objectives 

15 for 3 objectives 

Crossover probability 0.9 

Scalarizing function Augmented Tchebycheff Real value mutation probability 1/d 

Internal genetic algorithm 

evaluations per iteration 

200,000 Real value SBX parameter 10 

Crossover probability 0.2 Real value mutation parameter 50 

Real value mutation probability 1/d 

Real value SBX parameter 10 

Real value mutation parameter 50 

 

Table 2. Parameters used by ParEGO and NSGA II.  

 

Dominate ParEGO NSGA 

II 
Dominate LS NSGA 

II 
Dominate LS ParEGO 

LGP 100 100 ParEGO 7 59 NSGA II 2 42 

 

Dominated ParEGO NSGA 

II 

Dominated LS NSGA 

II 

Dominated LS ParEGO 

LGP 7 2 ParEGO 100 42 NSGA II 100 59 

Table 3. The dominance between solutions obtained by LS, ParEGO and NSGA II for KNO1. 

 

 

Dominate ParEGO NSGA II Dominate LS NSGA II Dominate LS ParEGO 

LGP 83 64 ParEGO 0 77 NSGA II 0 59 

 

Dominated ParEGO NSGA II Dominated LS NSGA II Dominated LS ParEGO 

LGP 0 0 ParEGO 83 59 NSGA II 64 77 

Table 4. The dominance between solutions obtained by LS, ParEGO and NSGA II for OKA1. 

 
Figure 4. Distribution of solutions on the Pareto frontier obtained by different methods for KNO1 

 

Figure 5. Behavior of merit function for test function KNO1 during the convergence phase 
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Figure 6. Distribution of solutions on the Pareto frontier for test function OKA1 

 
Figure 7.  Behavior of merit functions for test function OKA1 during the convergence phase. 

 

Different sizes of the objective space are illustrated in 

order to incorporate all solutions obtained by all 

techniques. The behavior of the merit function during the 

10 re-starts is depicted in Figure 5. From the results 

presented in Table 3 it can be observed that 7 of the 

solutions obtained by LS are dominated by solutions 

obtained by ParEGO and 2 are dominated by solutions 

obtained by NSGA II. Solutions obtained by LS dominate 

all 100 solutions obtained by both ParEGO and NSGA II. 

59 of the solutions obtained by NSGA II are dominated by 

solutions obtained by ParEGO while 42 of the solutions 

obtained by ParEGO are dominated by solutions obtained 

by NSGA II.  

 

Test function OKA1 

This test function [12] is a bi-objective test function 

having two variables and is defined as: 

minimize f1 = 1'x  

minimize 3

1

1212 3)'cos(3'2'2 −−+−= xxxf π  
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The Pareto optimal set lies on the curve 2'x = 

3cos( 1'x )+2, 1'x ∈[0, 2π]. The solutions obtained by LS, 

ParEGO and NSGA II for the test function DTLZ1a are 

depicted in Figure 6. Different sizes of the objective space 
are illustrated in order to incorporate all solutions 

obtained by all techniques. The behavior of the merit 

function during the 20 re-starts is depicted in Figure 7. 

From the results presented in Table 4 it can be observed 

that none of the solutions obtained by LS are dominated 
by solutions obtained by either ParEGO or NSGA II. 

Solutions obtained by LS dominate 83 solutions obtained 

by both ParEGO and 64 solutions obtained by NSGA II. 

77 of the solutions obtained by NSGA II are dominated by 

solutions obtained by ParEGO while 59 of the solutions 

obtained by ParEGO are dominated by solutions obtained 

by NSGA II. 

 

4. Conclusions  
 

The paper proposed a new approach for multiobjective 

optimization which uses an aggregation of objectives and 

transforms the MOP into a SOP. A line search based 
technique is applied in order to obtain one solution. 

Starting from this solution a simplified version of the 

initial line search is used in order to generate solutions 

with a well distribution on the Pareto frontier. Numerical 

experiments performed show that the proposed approach 

is able to converge very fast and provide a very good 
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distribution (even for discontinuous Pareto frontier) while 

compared with state of the art population based 

metaheuristics such as ParEGO and NSGA II. Compared 
to NSGA II and ParEGO, LGP has only few parameters to 

adjust.  

We used a fuzzy logic controller to adapt the 

parameter required to control the distribution of solutions 

in the spreading phase. The usage of fuzzy controller to 

adapt the parameter α seems to find a good distribution of 

solutions very quickly. 
The proposed method is computationally 

inexpensive, taken less than 200 milliseconds to generate 

a set of nondominated solutions well distributed on the 

Pareto frontier.  

The only inconvenience is that LGP involves 

first partial derivatives, which makes it be restricted to a 

class of problems which are continuous twice 

differentiable. But almost all practical engineering design 

problems are continuous differentiable.  
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