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Abstract. The aggregation of objectives in multiple criteria program-
ming is one of the simplest and widely used approach. But it is well
known that these techniques sometimes fail in different aspects for deter-
mining the Pareto frontier. This paper proposes a new line search based
approach for multicriteria optimization. The objectives are aggregated
and the problem is transformed into a single objective optimization prob-
lem. Then the line search method is applied and an approximate efficient
point is lacated. Once the first Pareto solution is obtained, a simplified
version of the former one is used in the context of Pareto dominance to
obtain a set of efficient points, which will assure a thorough distribution
of solutions on the Pareto frontier. In the current form, the proposed
technique is well suitable for problems having multiple objectives (it is
not limited to bi-objective problems). the functions to be optimized must
be continuous twice differentiable. In order to assess the effectiveness of
this approach, some experiments were performed and compared with
two recent well known population-based metaheuristics ParEGO [8] and
NSGA II [2]. When compared to ParEGO and NSGA II, the proposed
approach not only assures a better convergence to the Pareto frontier but
also illustrates a good distribution of solutions. From a computational
point of view, of the line search converge within a short time (average
about 150 milliseconds) and the generation of well distributed solutions
on the Pareto frontier is also very fast (about 20 milliseconds). Apart
from this, the proposed technique is very simple, easy to implement and
use to solve multiobjective problems.

1 Introduction

The field of multicriteria programming abounds in methods for dealing with dif-
ferent kind of problems. Nevertheless, there is still space for new approaches,
which can better deal with some of the difficulties encountered by the previ-
ous approaches. There are two main classes of approaches suitable for multiob-
jective optimization: scalarization methods and nonscalarizing methods. These
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approaches convert the Multiobjective Optimization Problem (MOP) into a Sin-
gle Objective Optimization Problem (SOP), a sequence of SOPs, or into an-
other MOP. There are several scalarization methods reported in the literature:
weighted sum approach, weighted t-th power approach, weighted quadratic ap-
proach, ε-constraint approach, elastic constraint approach, Benson approach,
etc. are some of them [5]. Since the standard weighted sum encounters some
difficulties, several other methods have been proposed to overcome the major
drawbacks of this method. These include: Compromise Programming [4], Phys-
ical Programming [9], Normal Boundary Intersection (NBI) [1], and the Normal
Constraint (NC) [9] methods. There is also a huge amount of work reported on
population-based mataheuristics for MOP [5].

In this paper, we propose a new approach which uses a scalarization of the
objectives in a way similar to the weighted t-th power approach (where t is 2
and the coefficients values are 1).

A line search based technique is used to obtain an efficient solution. Starting
with this solution, a set of efficient points are further generated, which are widely
distributed along the Pareto frontier using again a line search based method but
involving Pareto dominance relationship.

Empirical and graphical results and illustrations obtained by the proposed
approach are compared with two well known population based metaheuristics
namely ParEGO [8] and NSGA II [2].

2 Line Search Generator of Pareto Frontier

The line search [6] is a standard and well established optimization technique.
The standard line search technique is modified so that it is able to generate
the set of non-dominated solutions for a MOP. The approach proposed is called
Line search Generator of Pareto frontier (LGP) and it comprises of two phases:
first, the problem is transformed into a SOP and a solution is found using a
line search based approach. This is called as convergence phase. Second, a set
of Pareto solutions are generated starting with the solution obtained at the end
of convergence phase. This is called as spreading phase. The convergence and
spreading phases are described below.

Consider the MOP formulated as follows:
Let �m and �n be Euclidean vector spaces referred to as the decision space

and the objective space. Let X ⊂ �m be a feasible set and let f be a vector-
valued objective function f : �m → �n composed of n real-valued objective
functions f=(f1, f2,. . . , fn), where fk: �m → �, for k=1,2,. . . , n. A MOP is
given by:

min (f1(x), f2(x),. . . , fn(x)),

subject to x ∈ X .
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2.1 Convergence Phase

The MOP is transformed into a SOP by aggregating the objectives using an
approach similar to the weighted t-th power approach. We consider t= 2 and
the values of weights equal to 1. The obtained SOP is:

min F =
n∑

i=1

f2
i (x)

subject to x ∈ X .
As an important note, we would like to mention that the value 2 for t works

fine if the objective functions are positive (which is the case of our experiments).
But if at least one objective function is negative, then an odd value (for instance
3) must me used for t. Any of these values (2 or 3) works fine for our examples
and will not influence the results.

A modified line search method is used to find the optimum of this problem.
The modification proposed in this paper for the standard line search technique
refers to direction and step setting and also the incorporation of a re-start pro-
cedure. To fine tune the performance, the first partial derivatives of the function
to optimize are also made use of. The proposed modifications refer to:

– the setting of the direction and step
– the re-starting of the line search method

After a given number of iterations, the process is restarted by reconsidering
other arbitrary starting point which is generated by taking into account the
result obtained at the end of previous set of iterations.

Direction and step setting. Initially, several experiments were performed in
order to set an adequate value for the direction. The standard value +1 or -1 was
used and for some functions the value -1 was favorable to obtain good perfor-
mance. Some experiments were also performed by setting the direction value as
being a random number between 0 and 1. It was found that the usage of random
number helped to obtain overall very good performance for the entire considered
test functions. But usage of the value -1 for direction, obtains almost the same
performance similar to that obtained with a random value. So, either of these
values (the random one and the value -1) may be used for better performance.

The step is set as follows:
αk=2+ 3

22k+1
(1)

where k refers to the iteration number.
The modified line search technique is summarized as follows:

Line search()

Set k=1 (Number of iterations)
Repeat

for i=1 to No of variables
pk=random; //or p=-1;
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αk=2+ 3
22k+1

xk+1
i = xk

i + pk · αk

endfor
if F (xk+1 )>F (xk ) then xk+1=xk .
k=k+1

Until k=Number of iterations (a priori known).

Remarks

(i) The condition:
if F (xk+1 )>F (xk) then xk+1=xk

allows to move to the new generated point only if there is an improvement
in the quality of the function.

(ii) Number of iterations for which line search is applied is apriori known and
is usually a small number. For the experiments reported in this paper, the
number of these iterations was set to 10.

(iii) When restarting the line search method (after the insertion of the re-start
technique) the value of the iterations number starts again from 1 (this
should not be related to the value of α after the first set of iterations (and
after each of the following iterations)).

Several experiments were attempted to set a value for the step, starting with
random values (until a point is reached for which the objective function achieves a
better value); using a starting value for the step and generating random numbers
with Gaussian distribution around this number, etc. As a result of the initial
experiments performed, it was decided to use equation (1) to compute the step
size. But, of course, there are also several other ways to set this.

Incorporation of re-start procedure. In order to restart the algorithm the
result obtained in the previous set of iterations (denote it by x) is taken into
account and the steps given below are followed:

For each dimension iof the point x, the first partial derivative with respect to
this dimension is calculated. This means the gradient of the objective function
is calculated which is denoted by g. Taking this into account, the bounds of the
definition domain for each dimension are re-calculated as follows:

if gi = ∂F
∂xi

> 0 then upper bound =xi;

if gi = ∂F
∂xi

< 0 then lower bound =xi

The search process is re-started by re-initializing a new arbitrary point be-
tween the newly obtained boundaries.

2.2 Spreading Phase

At the end of the convergence phase, a solution is obtained. This solution is
considered as an efficient (or Pareto) solution. During this phase and taking into
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account of the existing solution, more efficient solutions are to be generated so
as to have a thorough distribution of all several good solutions along the Pareto
frontier. In this respect, the line search technique is made use of to generate one
solution at the end of each set of iterations. This procedure is applied several
times in order to obtain a larger set of non-dominated solutions. The following
steps are repeated in order to obtain one non-dominated solution:

Step 1. A set of nondominated solutions found so far is archived. Let us denote
it by NonS. Initially, this set will have the size one and will only contain
the solution obtained at the end of convergence phase.

Step 2. We apply line search for one solution and one dimension of this solution
at one time. For this:

Step 2.1. A random number i between one and |NonS| (|.| denotes the cardi-
nal) is generated. Denote the corresponding solution by nonS i.

Step 2.2. A random number j between one and the number of dimensions (the
number of decision variables) is generated. Denote this by nonS ij .

Step 3. Line search is applied for nonS ij .
Step 3.1. Set p=1 (the random value also works fine).
Step 3.2. Set α (which depends on the problem, on the number of total non-

dominated solutions which are to be generated, etc.).
Step 3.3. The new obtained solution new sol is identical to nonS i in all di-

mensions except dimension j which is:
new sol j= nonS ij+α ·p

Step 3.4. if (new sol j > upper bound) or (new sol j < lower bound)
then new sol j = lower bound + random · (upper bound – lower
bound).

Step 4. if F (new sol) > F (nonS 1)
then discard new sol
else if new sol is nondominated with respect to the set NonS
then add new sol to NonS and increase the size on NonS by 1.
Go to step 2.

Step 5. Stop

These steps are repeated until a set on nondominated solutions of a required
size is obtained. In our experiments the size of this set is 100.

Note that this procedure it very fast and it takes less than 20 milliseconds to
obtain 100 non-dominated solutions.

3 Experiments and Comparisons

In order to assess the performance of LGP, some experiments were performed
using some well known bi-objective and three-objective test functions, which
are adapted from [3], [7]. These test functions were also used by the authors of
ParEGO [8] and NSGA II [2], which are well known in the computational intel-
ligence community as very efficient techniques for multiobjective optimization.
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Table 1. Parameters used in experiments by ParEGO and NSGA II. d denotes the
number of decision parameter dimensions.

ParEGO NSGA II

Parameter Value Parameter Value

Initial population in latin hy-
percube

11d – 1 Population size 20

Total maximum evaluations 250 Maximum generations 13

Number of scalarizing vectors 11 for 2 objec-
tives
15 for 3 objec-
tives

Crossover probability 0.9

Scalarizing function Augmented
Tchebycheff

Real value mutation
probability

1/d

Internal genetic algorithm
evaluations per iteration

200,000 Real value SBX parame-
ter

10

Crossover probability 0.2 Real value mutation pa-
rameter

50

Real value mutation probabil-
ity

1/d

Real value SBX parameter 10

Real value mutation parame-
ter

50

Details about implementation of these two techniques may obtained from [2]
and [8]. Parameters used by ParEGO and NSGA II (given in Table 1) and the
results obtained by these two techniques are adapted from [8].

A set of 100 non-dominated solutions obtained by LGP, ParEGO, NSGA II is
compared in terms of dominance and convergence to the Pareto set. For the first
comparison, two indices were computed for each set of two comparisons: number
of solution obtained by the first technique which dominate solutions obtained
by the second technique and number of solutions obtained by the first technique
which are dominated by the solutions obtained by the second technique.

For two sets of A and B of solutions, which are compared, indices are denoted
by Dominate(A, B) and Dominated(A, B) respectively. Visualization plots are
used to illustrate the distribution of solutions on the Pareto frontier.

LGP uses only three parameters:
number of re-starts: 20;
number of iteration per each re-start: 10;
αfor the spreading phase (which is set independent for each test function).

3.1 Test Function DTLZ1a

The test function DTLZ1a is a two objective test function and has 6 variables
[8]. It is given by:

minimize f1 = 1
2x1(1 + g)

minimize f2 = 1
2 (1 − x1)(1 + g)
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g = 100
[

5 +
6∑

i=2

(
(xi − 0.5)2 − cos (2π (xi − 0.5))

)]

xi ∈[0, 1], i=1, . . . , n, n=6.

The Pareto set for this function consists of all solutions where all by the first
decision variables are equal to 0.5 and the first decision variable may take any
value between 0 and 1.

For this test function, the value of α for the spreading phase is set to 0.01.
The convergence to the Pareto frontier and the distribution of solutions obtained
by LGP, ParEGO and NSGA II for the test function DTLZ1a is depicted in
Figure 1. Different sizes of the objective space are illustrated in order to incor-
porate all solutions obtained by all techniques. It is obvious that LGP assure
a very good convergence and distribution for this function. From the results
presented in Table 2 it can be observed that none of the solutions obtained by
LGP are dominated neither by ParEGO or by NSGA II, while solutions ob-
tained by LGP dominate all 100 solutions obtained by ParEGO and NSGA II.
88 of the solutions obtained by NSGA II are dominated by solutions obtained
by ParEGO while 69 of the solutions obtained by ParEGO are dominated by
solutions obtained by NSGA II.

Table 2. The dominance between solutions obtained by LGP, ParEGO and NSGA II
for test function DTLZ1a

Dominate ParEGO NSGA
II

Dominate LGP NSGA
II

Dominate LGP ParEGO

LGP 100 100 ParEGO 0 69 NSGA II 0 88

Dominated ParEGO NSGA
II

Dominated LGP NSGA
II

Dominated LGP ParEGO

LGP 0 0 ParEGO 100 88 NSGA II 100 69

3.2 Test Function DTLZ4a

Test function DTLZ4a has three objective functions and 8 decision variables and
is given by:

minimize f1 = (1 + g) cos
(

x100
1 π
2

)
cos

(
x100
2 π
2

)

minimize f2 = (1 + g) cos
(

x100
1 π
2

)
sin

(
x100
2 π
2

)

minimize f3 = (1 + g) sin
(

x100
1 π
2

)

g =
8∑

i=3

(xi − 0.5)2

xi ∈[0, 1], i=1, . . . , n, n=8.

The Pareto front is 1/8 of the unit sphere centered in origin. The Pareto
optimal set consist of all solutions but the first two decision variables are equal
to 0.5 and the first two decision variables may take any value between 0 and 1.
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Fig. 1. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and
NSGA II for test function DTLZ1a

For test function DTLZ4a the value of α is set to 0.2. The distribution of
solutions on the Pareto frontier and the convergence to the Pareto frontier for
all the three algorithms is depicted in Figure 2. For test function DTLZ4a the
value of α is set to 0.2.

From Figure 2 it can be observed that, compared to ParEGO and NSGA II,
LGP is assuring a very good convergence. The latter two approaches are not
converging very well with the parameters used.

As evident from Table 3 none of the solutions obtained by LGP are dominated
neighter by ParEGO or by NSGA II while solutions obtained by LGP dominate
all 100 solutions obtained by ParEGO and NSGA II. 87 of the solutions obtained
by NSGA II are dominated by solutions obtained by ParEGO while 54 of the so-
lutions obtained by ParEGO are dominated by solutions obtained by NSGA II.

3.3 Test Function DTLZ7a

This test function has 3 objectives and 8 decision variables and it is given by:

minimize f1 = x1

minimize f2 = x2

minimize f3=(1+g)h
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Fig. 2. Convergence to the Pareto frontier and distribution of solutions obtained by
LGP, ParEGO and NSGA II on the Pareto frontier for test function DTLZ4a (view
from different angles)

Table 3. The dominance between solutions obtained by LGP, ParEGO and NSGA II
for test function DTLZ4a

Dominate ParEGO NSGA
II

Dominate LGP NSGA
II

Dominate LGP ParEGO

LGP 100 100 ParEGO 0 87 NSGA II 0 54

Dominated ParEGO NSGA
II

Dominated LGP NSGA
II

Dominated LGP ParEGO

LGP 0 0 ParEGO 100 54 NSGA II 100 87

g = 1 + 9
6

8∑

i=3

xi

h = 3 −
2∑

i=1

[
fi

1+g (1 + sin (3πfi))
]

xi ∈[0, 1], i=1, . . . , n, n=8.

The Pareto front has four discontinuous regions and the Pareto set consists
of all solutions where all by the first two decision variables are equal to 0.

The test function DTLZ7a has 4 discontinuous Pareto regions. LGP is able
to converge very well and it is able to spread into the all four disconnected
Pareto regions from a single starting point. The value of α used is 1, but there
is not much difference between different values of α. As evident from Figure 3,
both ParEGO and NSGA II ar far from the Pareto front in terms of convergence.
Also, none of the solutions obtained by LGP is dominated by neither ParEGO or
NSGA II. 17 solutions obtained by ParEGO are dominated by solutions obtained
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Fig. 3. Convergence to the Pareto frontier and distribution of solutions obtained by
LGP, ParEGO and NSGA II on the Pareto frontier for test function DTLZ7a (view
from different angles)

Table 4. The dominance between solutions obtained by LGP, ParEGO and NSGA II
for test function DTLZ7a

Dominate ParEGO NSGA
II

Dominate LGP NSGA
II

Dominate LGP ParEGO

LGP 100 100 ParEGO 0 80 NSGA II 0 17

Dominated ParEGO NSGA
II

Dominated LGP NSGA
II

Dominated LGP ParEGO

LGP 0 0 ParEGO 100 17 NSGA II 100 80

by NSGA II while 80 of the solutions obtained by NSGA II are dominated by
solutions obtained by ParEGO.

4 Conclusions

The paper proposes a new approach for multiobjective optimization which uses
an aggregation of objectives and transforms the MOP into a SOP. A line search
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based technique is applied in order to obtain one solution. Starting from this
solution a simplified version of the initial line search is used in order to generate
solutions with a well distribution on the Pareto frontier. Numerical experiments
performed show that the proposed approach is able to converge very fast and
provide a very good distribution (even for discontinuous Pareto frontier) while
compared with state of the art population based metaheuristics such as ParEGO
and NSGA II.

Compared to NSGA II and ParEGO, LGP has only few parameters to ad-
just. It is computationally inexpensive, taking less than 200 milliseconds to
generate a set of nondominated solutions well distributed on the Pareto
frontier.

The only inconvenience is that LGP involves first partial derivatives which
makes it be restricted to a class of problems which are continuous twice differ-
entiable. But almost all practical engineering design problems are continuous
differentiable.

One of the further work ideas is to find a better way to set the value of α.
In this paper, we considered different α values until we achieved a satisfactory
distribution. Also, we would like to extend LGP to deal with constraint multi-
objective optimization problems.
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