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Abstract

In this paper, a novel data hiding technique is
proposed, as an improvement over the Fibonacci LSB
data-hiding technique proposed by Battisti et al. [1].
First we mathematically model and generalize our
approach. Then we propose our novel technique,
based on decomposition of a number (pixel-value) in
sum of prime numbers. The particular representation
generates a different set of (virtual) Dbit-planes
altogether, suitable for embedding purposes. They not
only allow one to embed secret message in higher bit-
planes but also do it without much distortion, with a
much better stego-image quality, and in a reliable and
secured manner, guaranteeing efficient retrieval of
secret message. A comparative performance study
between the classical Least Significant Bit (LSB)
method, the Fibonacci LSB data-hiding technique and
our proposed schemes has been done. Analysis
indicates that image quality of the stego-image hidden
by the technique using Fibonacci decomposition
improves against that using simple LSB substitution
method, while the same using the prime decomposition

method improves drastically against that using
Fibonacci decomposition technique. Experimental
results show that, the stego-image is visually

indistinguishable from the original cover-image.

1. Introduction

Data hiding technique is a new kind of secret
communication technology. While cryptography
scrambles the message so that it can’t be understood,
steganography hides the data so that it can’t be
observed. In this paper, we discuss about a new
decomposition method for classical LSB data-hiding
technique, in order to make the technique more secure
and hence less predictable. We generate a new set of
(virtual) bit planes using our decomposition technique
and embed data bit in these bit planes.
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2. Fibonacci LSB Data Hiding Technique

The aim of this particular technique (proposed by
Battisti et al) is to investigate decomposition into
different bit-planes, based on Fibonacci—p-sequences,
F,(0)=F,()=1

F,(n)=F,(n-)+F,(n—p-1),Vvn22,ne N

and embed a secret message-bit into a pixel if it passes
the Zeckendorf condition, then during extraction,
follow the reverse procedure.

3. A Generalized LSB Data Hiding and the
Prime Decomposition Technique
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Figure 1. Generalized data-hiding technique

If we have k-bit cover image, only k bit-planes are
available to embed secret data. Distortion increases
exponentially with increasing bit-plane, it becomes
impossible to embed data in higher bit-planes.

So, our primary target here is to increase the total
number of available (and embeddable) bit planes
without much distortion. To do this, we try to find a
function f that increases the number of bit-planes (for a

k-bit image) from k to n,n > k , by converting to some
other binary number system with different weights,
ensuring that number of bits taken to represent the
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same pixel is greater than that of classical binary (these
extra bit-planes are referred to as virtual bit-planes),
also ensuring less abrupt change in pixel value with
increasing bit plane. It allows higher (virtual) bit planes
to be used to embed data with much less distortion.
Figures1 and 2 explain this concept.
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Figure 2. Illustration of embedding secret data-bit
3.1. The Number System

We define a number system by defining:
1. A constant, called base or radix ‘7’ (digits of the
number systeme {0,.., r— 1}

2. A function, called weight functionW(.), where

W (i) denotes weight corresponding to i™ bit, Vi
Hence, the pair (r,W(.)) defines a number system

completely. A number having representation
dyd;_y..d\d, in number system(r,W(.)) will have

k-1
value D= ZLO d, W(i),where,d, € {0.1,..k =1} in

decimal. Also, we may have more than one
representation for the same number in our number
system, we must be able to eliminate this redundancy
and represent one number uniquely. We use the
following strategy - from multiple representations of
the same value, choose the one with lexicographical
highest value, discard all others. For classical binary
number system, we have,

W) =2V Wi 2 s W(i)=2,Vie 2t U0},
corresponding to i bit-plane (LSB =0"bit) . A k-bit

number (i.e. pixel-value) p, is represented as,
k-1 ;

P = z Ob[C.Z’,where,biC 15 {0,1}. Now, f converts
i

this p, to some virtual pixel pfl with n (virtual) bit-

planes, n >k, to expand number of bit planes. To find
such an f is equivalent to finding a new weight
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function W(.),i.e.,W(i),Vie {0,...n—1}, so that W(i)
denotes weight of "
number system. p,/l = Zfl__olbi/c .W(i),bilc € {0,1},

our new decomposition, satisfying

virtual bit-plane in the new

(P 00y = (P;l)(z,w(.))

Also, W (i) must have less abrupt changes with respect
to increasing i than that in case of 2, Moreover, we
must ensure that the function f must be injective, i.e.,
invertible, otherwise we shall not be able to extract the
embedded message precisely.

3.2. Number System Using Fibonacci p-Sequence
Decomposition

The weight function proposed by Battisti et al.
isF,,Vne N, i.e.,W(.)=Fibp(.), number system to

model virtual bit-planes is(2,F,()). To ensure

invertibility, instead of Zeckendorf’s theorem, we
prefer to use lexicographically higher property in case
of Fibonacci as well, similar to what we shall use in
case of our prime decomposition technique.
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Figure 3. Fibonacci (1-sequence) decomposition for
8-bit image yielding 12 virtual bit-planes.

3.3. Proposed Prime Number Decomposition

We define a new number system, denoted as (2,P(.)),

where the weight function P(.) is defined as:

P(0)=1,P(i) = p;,Yie Z*, p, =i" Prime,

pPo=1p=2,p,=3,p3=5,.



Since the weight function here is composed of prime
numbers, we name this number system as prime
number system and the decomposition as prime
decomposition. If any value has more than one
representation in this number system, we always take
the lexicographically highest of them, to assert
invertible property. (e.g., the number 3 has 2 different
representations in 3-bit prime number system, namely,
100 and 011, since we have,
1.p,+0.p;+0.1=1.3+0.24+0.1=3

0.p,+1.p,+1.1=03+12+1.1=3

But 100 is lexicographically (from left to right) higher
than 011, we choose 100 to be valid representation for
3 in our prime number system and thus discard 011 as

an invalid representation. 3= max (100,011)=100.
lexicogaphic

Hence, the valid representations are:
000+ 0,001 1,010« 2,100 <> 3,

101 4,110 5,111 6

Now, we embed a secret data bit into a (virtual) bit-
plane by simply replacing the corresponding bit by the
data bit, only if we find that after embedding the
resulting representation is a valid representation in our
number system, otherwise we don’t embed, just skip.
This is only to guarantee the existence of the inverse
function and correctness for extraction of our secret
embedded message bit.
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Figure 4. Error in not guaranteeing uniqueness
As evident from Figure-4, it’s clear that one should
embed secret data bit only to those pixels, where, after
embedding, we get a valid representation in the number
system.

3.4. Embedding Algorithm

First we find the set of all prime numbers that are
required to decompose a pixel value in a k-bit cover-
image, i.e., we need to find a number ne N such that

all possible pixel values in the range [0,2° —1] can be
represented using first n primes in our n-bit prime
number system, so that we get ‘n’ virtual bit-planes

after decomposition. Using Goldbach conjecture etc,
m—1

that all pixel-values in the range [O,Z‘F0 p;lcan be

represented in our m-bit prime number system, so all
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we need to do is to find an ‘n’ such that

n—1 . .
o Pi >2% 1, since the highest number that can be
i=

. . . . n—1
represented in n-bit prime number system is » o Pi ).
i

After finding the primes, we create a map of k-bit
(classical binary decomposition) to n-bit numbers
(prime decomposition), n >k, marking all the valid
representations in our prime number system.

For an 8-bit image, part of pixel value vs. prime
decomposition map is shown in Figure 5.
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Figure-5. Prime decomposition for

yielding 15 virtual bit-planes

image

Next, for each pixel of cover image choose a (virtual)
bit plane, say p™ bit-plane (p <n), embed secret data

bit into that particular bit plane, by replacing the
corresponding bit by the data bit, iff we find that after
embedding the data bit, the resulting sequence is a
valid representation in n-bit prime number system, i.e.,
exists in the map. After embedding the secret message
bit, we convert the resultant sequence in prime number
system back to its value (in classical binary number
system) and get our stego-image.

The extraction algorithm is exactly the reverse. From
stego-image, we convert each pixel with embedded
data bit to its corresponding prime decomposition and
from p™ bit-plane extract secret message bit. Combine
all bits to get the secret message.



3.5. Comparison Between Standard Binary,
Fibonacci and Prime Decomposition

By Tchebychef theorem [5], we have,

0.92 < FOI) 105 w2,
X
where 77(x) =number of primes not exceeding x, which
leads to the very famous Prime Number
z(n)

Theorem lim =1. Now, from this, one can

n—ee (n/1n(n))

show that lim Py
n—e nln(n

LDy = G(n. ln(n))

=1, if p,be the n” prime,

A Lower Bound for the Fibonacci Numbers
If a be a positive root of the quadratic equation

1+\/§
2

by mathematical induction) that,

F(n)>a""' ,Vn>1,ne N. Since /5 ~2.236 , we get,
F(n)>(1.618034)"" ,vn>1

We can easily generalize the above definition of

Fibonacci sequence into Fibonacci p-sequence,
F,0)=F,()=1

Fp(n)z Fp(n—1)+Fp(n—p—1),Vn2 2,ne N

For p =1, we obtain Fibonacci 1-sequence, as defined

a’—a-1=0,ie,a=

, it is easy to show (e.g.,

above. Similarly, for other values of p, one can easily
derive (by similar induction) some exponential lower-
bounds, and it is quite obvious that the base of the
exponential lower bound will decrease gradually with
increasing p. e.g., for p = 2, if & be a positive root of

the equation a-a’-1=0, solving (e.g., by Newton-
Raphson) we geta =1.465575, and it’s easy to show
by induction that

F,(n)>(l 465575)" '\ Vn>1,
From above, we can generalize, for Fibonacci p-
sequence, if «a,be a positive root of the

equation @”*' —a” —1=0, we have the inequality,
-1
F,m> (e, )7,

1445
2

a, = 1465575, oty =1.380278, a, = 1.324718,
Vpe Z*

The sequence @, is decreasing in p .

a,e R0 = =1.618034,

o, >0,
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3.6. Performance Measures

Mean Squared Error and SNR: We have the following
test statistics for performance measures,

MsE=Y" leil (£, - g PMN

12
PSNR =101o —_—
g10 MSE

where M and N are the number of rows and number of
columns respectively of the cover image, f;; is the pixel

value from the cover image, g; is the pixel value from

the stego-image, and L is the peak signal value of the
cover image (for 8-bit images, L=255). Signal to noise
ratio quantifies the imperceptibility, by regarding the
message as the signal and the message as the noise.
Here, we use a slightly different test-statistic, namely,
Worst-case-Mean-Square-Error (WMSE) and the
corresponding PSNR (per pixel) as our test-statistics.
We define WMSE as follows:

If the secret data-bit is embedded in the i bit plane of
a pixel, the worst-case error-square-per-pixel

=WSE =W (i)(1-0)* =W(i)>, the case when the
corresponding bit in cover-image toggles in stego-
image, after embedding the secret data-bit. (e.g., worst-
case error-square-per-pixel for embedding in i™ bit
plane for a pixel in classical binary decomposition is
2 .

= (2’) =4'_ If the grayscale cover-image has size w x
h, we define,

WMSE = w><h><(W(i))2 =wXxhxWSE . Here, we try

to minimize this WMSE (hence WSE) and maximize
the corresponding PSNR, where

L2
PSNR =10log, | ——
&0 sk

3.6.1. Proposed Prime Decomposition generates
More (virtual) Bit-planes

Using Classical binary decomposition, for a k-bit cover
image, we get only k bit-planes per pixel, where we can
embed our secret data bit. Now, we have,
Dy = H(n. ln(n)) and

Ja,e R :F,(n)> (ap)"_l
n.n(n) = o(ap") directly implies p,, = o(F » (n))

The maximum (highest) number that can be

represented in n-bit number system using our prime
n-1

decomposition is » oPi and in case of n-bit number
i=

system using Fibonacci p-sequence decomposition



Now, it’'s easy to  prove

that In; € N :Vn 2 n, we have,

"Fiy> S p, . So, usi ber of bit
2;20 () > Zi:O p; - So, using same number of bits

it is possible to represent more numbers in case of
prime decomposition than in case of Fibonacci p-
sequence decomposition, when number of bits is
greater than some threshold. This in turn implies that
number of (virtual) bit-planes generated in case of
prime decomposition will be eventually (after some n)
more than the corresponding number of (virtual) bit-
planes  generated by  Fibonacci  p-Sequence
decomposition. Figure 6 illustrates this claim.

3.6.2. Prime Decomposition gives less distortion in
higher bit-planes

Here we assume the secret message length (in bits) is
same as image size, for evaluation of our test-statistics.
For message with different length, the same can
similarly be derived in a straight-forward manner. In
case of our Prime Decomposition, WMSE for

embedding secret message bit only in 1™ (virtual) bit-
plane of each pixel (after expressing a pixel in our
prime number system, using prime decomposition

lth

technique) = p,z, because change in bit plane of a

pixel simply implies changing of the pixel value by at
most ™ prime number. From above, (treating image-

size as constant) we conclude,
_ 2 _ a2
WMSE,,,,,) L —wxoxp =60 1080)

whereas WMSE in case of classical (traditional) binary
(LSB) data hiding technique is given by,
sk, ﬁ —ola).

thy .
bit=plane ) gipary—Decomposition

The above result implies that the distortion in case of
prime decomposition is much less (polynomial) than
for classical binary (exponential).Now, let’s calculate
the WMSE for the embedding technique using
Fibonacci p-sequence decomposition. In this case,
WMSE for embedding secret message bit only in "
(virtual) bit-plane of each pixel (expressing it using

=(F, ),

because change in 1™ bit plane of a pixel implies

Fibonacci-1-sequence  decomposition)

changing of pixel value by at most 1™ Fibonacci
number. For p=1,
Wwmse ., )

I1%bit = plane Jpiponaeci —1-Sequence — Decomposit on A

=wxhx(F()?= 49((F(l))2)> 9((2.618 )l)
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Similarly, for other values of p, one can easily derive
(by induction) some exponential lower-bounds, which
are definitely better than the exponential bound
obtained in case of classical binary decomposition, but
still they are exponential in nature, even if the base of
the exponential lower bound will decrease gradually
with increasing p. Generalizing, we get,
> 9((0{ = )/ j

thy )
bit—plane / ipongcci — p—Sequence — Decomposit on

1+\/§

2

(was, T

2 vpezt

+ _ 2
a,e R, = Ay >

2. L
he sequence & p 18 decreasing in p .

Obviously, the Fibonacci-p-sequence decomposition,
despite  being better than classical binary
decomposition, is still exponential and causes much-
more distortion in the higher bit-planes, than our prime
decomposition, in which case WMSE is polynomial
(and not exponential!) in nature.

The plot shown in Figure-6 proves our claim, it
vindicates polynomial nature of the weight function in
case of prime decomposition and exponential nature of
classical binary and Fibonacci decomposition.
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test-statistics,
= 9(4’)

At a glance, the result of our

wase,

thy .
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= 9(12.1og2(1))
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cpem+,2.618>cp >c, ., Vpe Z*, with
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(PSNR worst )Cla.rsical — Binary —Decomposit ion 10.log 10[ (21

(PSNR worst )Pr ime — Decomposit ion = lOlOg 10 [(Clzlogz(l))zJ’C € %+.

_ L-1f
(PSNR worst )Fibonacci — p—Decomposit ion — 1O‘IOgl() (C ); a
P

o,€ R = 2.618,, > B,.,,Vpe 7", with

2.618)

2k-1)2j

(PSNR vorst Driponacei 1= Decomposit ion = 10-108 10[

4. Experiment Results

We have, as input, an 8-bit gray-level cover image of
Lena. Secret message length = cover image size,
(message string ‘sandipan’ repeated multiple times to
fill the cover image size).The secret message bits are
embedded in chosen bit-plane ‘p’. The test message is
hidden into the chosen bit-plane using the classical
binary (LSB) technique, Fibonacci (1-sequence)
decomposition and Prime decomposition technique
separately and compared.

Glassical Binary (LSE) Fibonaccifi-sequence)  Prime
asition O

Decomposition Db it
m §
i
||

scomposition

Figure 7. Results of embedding data in different bit-
planes using different data-hiding techniques
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Figure 7 illustrates that we get 8, 12 and 15 (virtual)
bit-planes using classical LSB, Fibonacci and Prime
decomposition data-hiding technique respectively
(highest 15 virtual bit-planes for Prime). Data-hiding
technique using the prime decomposition has a better
performance than that of Fibonacci decomposition, the
later being more efficient than classical binary
decomposition, when judged in terms of embedding
secret data bit into higher bit-planes causing least
distortion, thereby least chance of being detected. To
embed in more than one virtual bit-plane, one may use
variable depth embedding [2].

5. Conclusions

This paper presented very simple method of data hiding
technique using prime numbers. It is shown (both
theoretically and experimentally) that the data-hiding
technique using prime decomposition outperforms the
famous LSB data hiding technique using classical
binary decomposition, and that using Fibonacci p-
sequence decomposition. We have experimented using
the famous Lena image, but since our theoretical
derivation illustrates that the test-statistic value
(WMSE, PSNR) is independent of the probability mass
function of the gray levels of the input image, the
(worst-case) results will be similar if we use any gray-
level image as input, instead of the Lena image.
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