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Abstract 

 
Several problems from engineering, chemistry, medicine, 

etc. can be formulated as a system of equations. Finding a 

solution for such a system sometimes requires high 

computational efforts. There are situations when these 

systems have multiple solutions. For such problems, the 

task is to find as many solutions as possible. In this paper, 

we deal with such systems of equations, which have 

multiple solutions and we attempt to solve them using two 

different approaches. Both approaches transform the 

problem into an optimization problem. The two approaches 

proposed in are (1) a modified line search and (2) an 

evolutionary algorithm. Several experiments are performed 

in order to emphasize the advantages and disadvantages of 

the two methods. 

 

1. Introduction 
 
A nonlinear system of equations is defined as: 
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where  x = (x1, x2,…, xn),  f1,…,fn are nonlinear functions in 

the space of all real valued continuous functions on 
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Some of the equations can be linear, but not all of them. 

Finding a solution for a nonlinear system of equations f(x) 

involves finding a solution such that every equation in the 

nonlinear system is 0: 
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The assumption is that a zero, or root, of the system exists. 

The solutions we are looking for are those points (if any) 

that are common to the zero contours of fi, i=1,...,n. 

There are several ways to solve nonlinear equation 

systems [8]. Probably the most famous techniques are 

Newton type techniques. Other techniques are: Trust 

Region method, Broyden method, Secant method, Halley 

method. 

In most cases, the solution of a system of equations 

is not unique. Several practical problems require finding the 

multiple solutions for a system. In this research, we focus 

on these types of equations systems. For this purpose, we 

test two approaches, which treat the problem in two 

different ways. The first approach is a line search based 

technique able to obtain one approximate solution in one 

run. This technique is applied several times in order to get 

multiple solutions. The second approach transforms the 

system into a multiobjective optimization problem [4]. A 

population based metaheuristic (evolutionary algorithm) is 

then applied. Pareto dominance concept is used and a set of 

feasible solutions (Pareto optimal) are obtained in a single 

run. Rest of the paper is organized as follows. In Section 2, 

we present the two optimization approaches followed by 

experiment results in Section 3. Some Conclusions are 

provided towards the end. 

 

2. Optimization Approaches Used 
 
A modified line search and evolutionary algorithms are 

proposed for solving equation systems. Each of them and 

the way in which they treat the problem is presented below. 

 

2.1 Line search 

 

It is known that line search techniques uses a starting point. 

There are also versions, which allow the usage of multiple 

points and the search starts separately from each of these 

points. In the proposed approach, multiple arbitrary starting 

points are used. Each point is randomly generated over the 

definition domain [min1, max1] ×[min2, max2] × . . . × 

[minn, maxn]. 

 
For direction, we use a random value between -0.5 and 0.5. 

The step value is 
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, where k denotes the current  

iteration number. After a given number of iterations, the 

search process is restarted. In order to restart the algorithm, 

the best result obtained in the previous set of iterations is 

taken into account and by following the steps given below: 



 

o Among all the considered points, the solution for 

which the objective function is obtaining the best 
value is selected. If there are several such 

solutions, one of them is randomly selected. This 

solution will be a multi-dimension point in the 

search space and denoted by x for an easier 

reference. 

o For each dimension i of the point x, the first partial 

derivative with respect to this dimension is 

calculated. This means the gradient of the 

objective function is calculated, which is denoted 

by g. Taking this into account, the bounds of the 

definition domain for each dimension is re-
calculated as follows: 

if 
i
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f
g
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= > 0 then maxi = xi; 

if 
i

i
x

f
g

∂

∂
= < 0 then mini = xi 

o The search process is re-started by re-initializing a 
new set of arbitrary points but between the newly 

obtained boundaries (between the new maxi or new 

mini). 

 

The line search is a very useful optimization tool.  The 

equations system is transformed into an optimization 
problem as follows [5][6][7]: 
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2.2 Evolutionary Approach 

 
The evolutionary approach transforms the systems of 

equations into a multiobjective optimization problem as 

follows: 

Minimize 
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Real encoding of solutions, tournament selection, convex 

crossover and Gaussian mutation are used [1][3][9][10]. 

Pareto dominance concept [10] is used in order to compare 

two solutions. A detailed description of the approach is 

given in [4]. 

 

3. Experiments and Results 
 
We considered 4 systems of equations having between one 

and nine solutions [2]. In Table 1 the details of these 

systems are provided. 

 

 

 

 

 

 

Problem Number of 

variables 

Range 

Brown 5 [-2, 2]
5 

Bullard 2 [5.49⋅e-6
, 4.553]×[ 

0.0021961, 18.21] 

Ferrais 2 [0.25, 1]×[1.5, 6.28] 

Himmelblau 2 [-5, 5]
2 

Table 1. Benchmark functions used in experiments. 

 

Each algorithm was run 10 times. All the non-dominated 

solution sets obtained were unified at the end of each run. 

For the line search (LS) approach, we considered all the 

solutions (out of the 10 obtained), which are different. Also, 

the evolution of the best merit function obtained by LS in 

all the 10 runs is illustrated. Parameters used by LS and EA 

for all benchmarks are given in Table 2. 

 

3.1. Example 1 (Brown)  

 

This benchmark is given by the following system of 

equations: 
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LS obtained a single exact solution in all the independent 

runs. This solution is (1, 1, 1, 1, 1) for which the functions 

values are all equal to 0.  The evolution of the merit 

function is depicted in Figure 1. It can be seen that the merit 

function converges to 0 after 4 iterations (we consider 5 

iterations in one re-start). This means there is not even a 

need to use derivatives and to restart the line search. The 

EA approach is obtaining multiple solutions but no one is 

closed to the result obtained by LS.  In Figure 2 the 

solutions obtained by EA in all 10 runs are plotted. It can be 

observed that only few of them are having the Euclidian 

norm less than 1.  

 
Figure 1. The evolution of the merit function for LS 

approach for the Brown benchmark. 

 

 

 



  

Parameter settings Parameter setting 

 Brown Bullard Ferrais Himmelblau 

Line search 

No of starting points 100 100 100 100 

No of re-starts 10 10 10 10 

No of iterations per re-start 5 5 5 5 

Evolutionary algorithm 

Population size 500 100 100 500 

Number of generations 500 500 500 500 

Size of nondominated set 100 100 100 100 

Sigma (for mutations) 0.1 0.1 0.1 0.1 

Tournament size 3 3 3 3 

 

 Table 2. Parameters used in experiments by LS and EA 

 

Figure 2. Solutions obtained by evolutionary algorithm for Brown benchmark. 

Figure 3. Solutions obtained by LS and EA for Bullard benchmark (objectives space-left, variables space-right). 

Figure 5. Solutions obtained by EA for Ferrais benchmark (objectives space – left, variables space-right). 

 

 

 



   

Figure 7. Solutions obtained by LS and EA for Himellblau benchmark represented in the objectives space (different sizes of 

the domain are considered for a better visualization).  

 

Solution Functions values 

x1 x2 f1 f2 

-0.270841381989373 -0.923036977925469 1.51325E-4 4.19365E-5 

0.0867085036783106 2.88423339327931 1.19474E-3 1.212087E-3 

-3.07304526798170 -0.0813371350117495 1.58640E-3 3.61678E-4 

3.38519412590167 0.0735892503227077 -1.93149E-4 -3.80767E-3 

3.00003916764214 1.99979209998351 1.25948E-3 6.28423E-3 

3.58441811907790 -1.84770519568769 -1.85554E-3 -1.22804E-2 

-0.127609787275348 -1.95313642658286 2.22599E-2 -8.22744E-3 

Table 3. Solutions obtained by LS for Himmelblau benchmark. 

 

3.2. Example 2 (Bullard) 
 

This benchmark consists of a system of two equations 

given by: 
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Figure 4. The evolution of merit function for LS approach 

for the Bullard benchmark. 

 

 

 

3.3. Example 3 (Ferrais) 

 
This benchmark consists of the following system of 

equations: 

0)sin(5.05.0
25.0

2112 =⋅⋅−⋅+ xxxx
π  

( ) 0
25.0

12 12
12 =−








−+⋅⋅−⋅

⋅
eexex

e x

ππ  
 

For this example, LS is obtaining a single solution which 

is (0.5, 3.14) for which the functions values are 0.0001265 

and 0.0137805.  

Solutions obtained by EA are plotted in Figure 5. The 

evolution of the merit function for LS is depicted in 

Figure 6.  

 

3.4. Example 4 (Himmelblau) 

This example is given by the following system of 

equations: 
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Figure 6. Evolution of merit function for LS for Ferrais 

benchmark. 

 

There are 9 known solutions found so far. In 10 

independent runs, LS is able to detect 7 solutions. The 7 

solutions obtained by LS are given in Table 3. Solutions 

obtained by both LS and EA are depicted in Figure 7 

(objectives space) and Figure 8 (variables space). As 

evident from Figure 8, in the variables space the solutions 

obtained by EA are centered on one of the solutions 

obtained by LS. The convergence of the merit function for 

the best result obtained in 10 runs (which is 0.2E-8) is 

depicted in Figure 9.  

 
Figure 8. Solutions obtained by LS and EA for 

Himellblau benchmark represented in the variables space. 

 
Figure 9. Evolution of merit function for LS for 

Himmelblau benchmark. 

 

4. Conclusions  

The goal of the paper is to find multiple solutions for a 

system of nonlinear equations. Two different techniques 

which transform the problem into an optimization 

problem are considered: line search based approach (LS), 

which transforms the systems of equations into a single 

objective optimization problem and Evolutionary 

Algorithms (EA) based approach which transforms the 

system into a multobjective optimization problem. Several 

equations systems having more than one solution are 

considered in experiments. The numerical results reveal 

that LS can approximate solutions better than EA even 

thought LS detect only one solution at one time and has to 

be applied multiple times while EA detects a set of 

solutions in one single run. Still the advantage of EA is 

that it can obtain multiple solutions and sometimes the 

user really needs a set from where can choose the desired 

solution. 
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