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An intrusion Detection System (IDS) is a program that analyzes what hap-
pens or has happened during an execution and tries to find indications that
the computer has been misused. An IDS does not eliminate the use of pre-
ventive mechanism but it works as the last defensive mechanism in securing
the system. This Chapter evaluates the performances of two Genetic Pro-
gramming techniques for IDS namely Linear Genetic Programming (LGP)
and Multi-Expression Programming (MEP). Results are then compared with
some machine learning techniques like Support Vector Machines (SVM) and
Decision Trees (DT). Empirical results clearly show that GP techniques could
play an important role in designing real time intrusion detection systems.

3.1 Introduction

Computer security is defined as the protection of computing systems against
threats to confidentiality, integrity, and availability [28]. Confidentiality (or se-
crecy) means that information is disclosed only according to policy, integrity
means that information is not destroyed or corrupted and that the system
performs correctly, availability means that system services are available when
they are needed. Computing system refers to computers, computer networks,
and the information they handle. Security threats come from different sources
such as natural forces (such as flood), accidents (such as fire), failure of ser-
vices (such as power) and people known as intruders. There are two types of
intruders: the external intruders who are unauthorized users of the machines
they attack, and internal intruders, who have permission to access the system
with some restrictions. The traditional prevention techniques such as user au-
thentication, data encryption, avoiding programming errors and firewalls are
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used as the first line of defense for computer security. If a password is weak
and is compromised, user authentication cannot prevent unauthorized use,
firewalls are vulnerable to errors in configuration and ambiguous or undefined
security policies. They are generally unable to protect against malicious mo-
bile code, insider attacks and unsecured modems. Programming errors cannot
be avoided as the complexity of the system and application software is chang-
ing rapidly leaving behind some exploitable weaknesses. intrusion detection is
therefore required as an additional wall for protecting systems. Intrusion de-
tection is useful not only in detecting successful intrusions, but also provides
important information for timely countermeasures.

An intrusion is defined [10] as any set of actions that attempt to compro-
mise the integrity, confidentiality or availability of a resource. This includes a
deliberate unauthorized attempt to access information, manipulate informa-
tion, or render a system unreliable or unusable. An attacker can gain illegal
access to a system by fooling an authorized user into providing information
that can be used to break into a system. An attacker can deliver a piece of
software to a user of a system which is actually a trojan horse containing ma-
licious code that gives the attacker system access. Bugs in trusted programs
can be exploited by an attacker to gain unauthorized access to a computer
system. There are legitimate actions that one can perform that when taken to
the extreme can lead to system failure. An attacker can gain access because
of an error in the configuration of a system. In some cases it is possible to fool
a system into giving access by misrepresenting oneself. An example is sending
a TCP packet that has a forged source address that makes the packet appear
to come from a trusted host. Intrusions are classified [29] as six types.

Attempted break-ins, which are detected by typical behavior profiles or
violations of security constraints. Masquerade attacks, which are detected by
atypical behavior profiles or violations of security constraints. Penetration of
the security control system, which are detected by monitoring for specific
patterns of activity. Leakage, which is detected by atypical use of system
resources. Denial of service, which is detected by a typical use of system
resources. Malicious use, which is detected by atypical behavior profiles, vio-
lations of security constraints, or use of special privileges.

3.2 Intrusion Detection

Intrusion detection is classified into two types: misuse intrusion detection and
anomaly intrusion detection. Misuse intrusion detection uses well-defined pat-
terns of the attack that exploit weaknesses in system and application software
to identify the intrusions. These patterns are encoded in advance and used to
match against the user behavior to detect intrusion.

Anomaly intrusion detection uses the normal usage behavior patterns to
identify the intrusion. The normal usage patterns are constructed from the
statistical measures of the system features, for example, the CPU and I/O
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activities by a particular user or program. The behavior of the user is ob-
served and any deviation from the constructed normal behavior is detected as
intrusion.
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Fig. 3.1. Network protected by an IDS

Figure 3.1 illustrates a simple network, which is protected using IDS. We
have two options to secure the system completely, either prevent the threats
and vulnerabilities which come from flaws in the operating system as well as
in the application programs or detect them and take some action to prevent
them in future and also repair the damage. It is impossible in practice, and
even if possible, extremely difficult and expensive, to write a completely se-
cure system. Transition to such a system for use in the entire world would
be an equally difficult task. Cryptographic methods can be compromised if
the passwords and keys are stolen. No matter how secure a system is, it is
vulnerable to insiders who abuse their privileges. There is an inverse relation-
ship between the level of access control and efficiency. More access controls
make a system less user-friendly and more likely of not being used. An Intru-
sion Detection system is a program (or set of programs) that analyzes what
happens or has happened during an execution and tries to find indications
that the computer has been misused. An Intrusion detection system does not
eliminate the use of preventive mechanism but it works as the last defensive
mechanism in securing the system.

Data mining approaches are a relatively new techniques for intrusion detec-
tion. There are a wide variety of data mining algorithms drawn from the fields
of statistics, pattern recognition, machine learning, and databases. Previous
research of data mining approaches for intrusion detection model identified
several types of algorithms as useful techniques. Classification is one of the
data mining algorithms, which have been investigated as a useful technique
for intrusion detection models.
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3.3 Related Research

James Anderson [2] first proposed that audit trails should be used to monitor
threats. All the available system security procedures were focused on denying
access to sensitive data from an unauthorized source. Dorothy Denning [7]
first proposed the concept of intrusion detection as a solution to the problem
of providing a sense of security in computer systems. The basic idea is that
intrusion behavior involves abnormal usage of the system. The model is a
rule-based pattern matching system. Some models of normal usage of the
system could be constructed and verified against usage of the system and any
significant deviation from the normal usage flagged as abnormal usage. This
model served as an abstract model for further developments in this field and
is known as generic intrusion detection model and is depicted in Figure 3.2
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Fig. 3.2. A generic intrusion detection model

Statistical approaches compare the recent behavior of a user of a computer
system with observed behavior and any significant deviation is considered as
intrusion. This approach requires construction of a model for normal user
behavior. IDES (Intrusion Detection Expert System) [17] first exploited the
statistical approach for the detection of intruders. It uses the intrusion de-
tection model proposed by Denning [7] and audit trails data as suggested in
Anderson [2]. IDES maintains profiles, which is a description of a subject’s
normal behavior with respect to a set of intrusion detection measures. Profiles
are updated periodically, thus allowing the system to learn new behavior as
users alter their behavior. These profiles are used to compare the user be-
havior and informing significant deviation from them as the intrusion. IDES
also uses the expert system concept to detect misuse intrusions. This system
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has later developed as NIDES (Next-generation Intrusion Detection Expert
System) [18]. The advantage of this approach is that it adaptively learns the
behavior of users, which is thus potentially more sensitive than human ex-
perts. This system has several disadvantages. The system can be trained for
certain behavior gradually making the abnormal behavior as normal, which
makes intruders undetected. Determining the threshold above which an intru-
sion should be detected is a difficult task. Setting the threshold too low results
in false positives (normal behavior detected as an intrusion) and setting too
high results in false negatives (an intrusion undetected). Attacks, which oc-
cur by sequential dependencies, cannot be detected, as statistical analysis is
insensitive to order of events.

Predictive pattern generation uses a rule base of user profiles defined as
statistically weighted event sequences [30]. This method of intrusion detection
attempts to predict future events based on events that have already occurred.
This system develops sequential rules of the from El1 - E2 - E3 — (E4 =
94%; E5 = 6%) where the various E’s are events derived from the security
audit trail, and the percentage on the right hand of the rule represent the
probability of occurrence of each of the consequent events given the occur-
rence of the antecedent sequence. This would mean that for the sequence of
observed events E1 followed by E2 followed by E3, the probability of event E4
occurring is 94% and that of E5 is 6%. The rules are generated inductively
with an information theoretic algorithm that measures the applicability of
rules in terms of coverage and predictive power. An intrusion is detected if
the observed sequence of events matches the left hand side of the rule but the
following events significantly deviate from the right hand side of the rule. The
main advantages of this approach include its ability to detect and respond
quickly to anomalous behavior, easier to detect users who try to train the
system during its learning period. The main problem with the system is its
inability to detect some intrusions if that particular sequence of events have
not been recognized and created into the rules.

State transition analysis approach construct the graphical representation
of intrusion behavior as a series of state changes that lead from an initial
secure state to a target compromised state. Using the audit trail as input,
an analysis tool can be developed to compare the state changes produced by
the user to state transition diagrams of known penetrations. State transition
diagrams form the basis of a rule-based expert system for detecting pene-
trations, called the State Transition Analysis Tool (STAT) [23]. The STAT
prototype is implemented in USTAT (Unix State Transition Analysis Tool)
[11] on UNIX based system. The main advantage of the method is it detects
the intrusions independent of audit trial record. The rules are produced from
the effects of sequence of audit trails on system state whereas in rule based
methods the sequence of audit trails are used. It is also able to detect coop-
erative attacks, variations to the known attacks and attacks spanned across
multiple user sessions. Disadvantages of the system are it can only construct
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patterns from sequence of events but not from more complex forms and some
attacks cannot be detected, as they cannot be modeled with state transitions.

Keystroke monitoring technique utilizes a user’s keystrokes to determine
the intrusion attempt. The main approach is to pattern match the sequence
of keystrokes to some predefined sequences to detect the intrusion. The main
problems with this approach are lack of support from operating system to cap-
ture the keystroke sequences and also many ways of expressing the sequence
of keystrokes for the same attack. Some shell programs like bash, ksh have
the user definable aliases utility. These aliases make this technique difficult to
detect the intrusion attempts unless some semantic analysis of the commands
is used. Automated attacks by malicious executables cannot be detected by
this technique as they only analyze the keystrokes.

IDES [17] used expert system methods for misuse intrusion detection and
statistical methods for anomaly detection. IDES expert system component
evaluates audit records as they are produced. The audit records are viewed as
facts, which map to rules in the rule-base. Firing a rule increases the suspicion
rating of the user corresponding to that record. Each user’s suspicion rating
starts at zero and is increased with each suspicious record. Once the suspicion
rating surpasses a pre-defined threshold, an intrusion is detected. There are
some disadvantages to expert system method. An Intrusion scenario that does
not trigger a rule will not be detected by the rule-based approach. Maintaining
and updating a complex rule-based system can be difficult. The rules in the
expert system have to be formulated by a security professional which means
the system strength is dependent on the ability of the security personnel.

Model-Based approach attempts to model intrusions at a higher level of
abstraction than audit trail records. This allows administrators to generate
their representation of the penetration abstractly, which shifts the burden of
determining what audit records are part of a suspect sequence to the expert
system. This technique differs from the rule-based expert system technique,
which simply attempt to pattern match audit records to expert rules. Garvey
and Lunt’s [8] model-based approach consists of three parts: anticipator, plan-
ner and interpreter. The anticipator generates the next set of behaviors to be
verified in the audit trail based on the current active models and passes these
sets to the planner. The planner determines how the hypothesized behavior
is reflected in the audit data and translates it into a system dependent audit
trail match. The interpreter then searches for this data in the audit trail. The
system collects the information this way until a threshold is reached, then it
signals an intrusion attempt. The advantage of this model is it can predict
the intruder’s next move based on the intrusion model, which is used to take
preventive measures, what to look for next and verify against the intrusion
hypothesis. This also reduces the data to be processed as the planner and
interpreter filter the data based on their knowledge what to look for, which
leads to efficiency. There are some drawbacks to this system. The intrusion
patterns must always occur in the behavior it is looking for otherwise it cannot
detect them.
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The Pattern Matching [14] approach encodes known intrusion signatures
as patterns that are then matched against the audit data. Intrusion signa-
tures are classified using structural interrelationships among the elements of
the signatures. The patterned signatures are matched against the audit trails
and any matched pattern can be detected as an intrusion. Intrusions can be
understood and characterized in terms of the structure of events needed to
detect them. A Model of pattern matching is implemented using colored petri
nets in IDIOT [15]. Intrusion signature is represented with Petri nets, the
start state and final state notion is used to define matching to detect the
intrusion. This system has several advantages. The system can be clearly sep-
arated into different parts. This makes different solutions to be substituted for
each component without changing the overall structure of the system. Pattern
specifications are declarative, which means pattern representation of intrusion
signatures can be specified by defining what needs to be matched than how it
is matched. Declarative specification of intrusion patterns enables them to be
exchanged across different operating systems with different audit trails. There
are few problems in this approach. Constructing patterns from attack scenar-
ios is a difficult problem and it needs human expertise. Attack scenarios that
are known and constructed into patterns by the system can only be detected,
which is the common problem of misuse detection.

3.4 Evolving IDS Using Genetic Programming (GP)

This section provides an introduction to the two GP techniques used namely
Linear Genetic Programming (LGP) and Multi Expression Programming
(MEP).

3.4.1 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on
linear genomes [41]. Its main characteristics in comparison to tree-based GP
lies in that the evolvable units are not the expressions of a functional pro-
gramming language (like LISP), but the programs of an imperative language
(like C/C++). An alternate approach is to evolve a computer program at the
machine code level, using lower level representations for the individuals. This
can tremendously hasten the evolution process as, no matter how an individ-
ual is initially represented, finally it always has to be represented as a piece of
machine code, as fitness evaluation requires physical execution of the individ-
uals. The basic unit of evolution here is a native machine code instruction that
runs on the floating-point processor unit (FPU). Since different instructions
may have different sizes, here instructions are clubbed up together to form
instruction blocks of 32 bits each. The instruction blocks hold one or more
native machine code instructions, depending on the sizes of the instructions.
A crossover point can occur only between instructions and is prohibited from
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occurring within an instruction. However the mutation operation does not
have any such restriction.

The settings of various linear genetic programming system parameters are
of utmost importance for successful performance of the system. The popula-
tion space has been subdivided into multiple subpopulation or demes. Migra-
tion of individuals among the sub-populations causes evolution of the entire
population. It helps to maintain diversity in the population, as migration
is restricted among the demes. Moreover, the tendency towards a bad local
minimum in one deme can be countered by other demes with better search
directions. The various LGP search parameters are the mutation frequency,
crossover frequency and the reproduction frequency: The crossover operator
acts by exchanging sequences of instructions between two tournament win-
ners. Steady state genetic programming approach was used to manage the
memory more effectively.

3.4.2 Multi Expression Programming (MEP)

A GP chromosome generally encodes a single expression (computer program).
By contrast, a Multi Expression Programming (MEP) chromosome encodes
several expressions. The best of the encoded solution is chosen to represent the
chromosome (by supplying the fitness of the individual). The MEP chromo-
some has some advantages over the single-expression chromosome especially
when the complexity of the target expression is not known. This feature also
acts as a provider of variable-length expressions. Other techniques (such as
Grammatical Evolution (GE) [27] or Linear Genetic Programming (LGP)
[1]) employ special genetic operators (which insert or remove chromosome
parts) to achieve such a complex functionality. Multi Expression Program-
ming (MEP) technique ([20], [21]) description and features are presented in
what follows.

3.4.3 Solution Representation

MEP genes are (represented by) substrings of a variable length. The number
of genes per chromosome is constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a function symbol. A gene
that encodes a function includes pointers towards the function arguments.
Function arguments always have indices of lower values than the position of
the function itself in the chromosome.

The proposed representation ensures that no cycle arises while the chro-
mosome is decoded (phenotypically transcripted). According to the proposed
representation scheme, the first symbol of the chromosome must be a terminal
symbol. In this way, only syntactically correct programs (MEP individuals)
are obtained.
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An example of chromosome using the sets F'= {+, *} and T= {a, b, ¢, d}
is given below:

¥4 20 4 o8

The maximum number of symbols in MEP chromosome is given by the
formula:

Number_of Symbols = (n+1) * (Number_of_-Genes — 1) + 1,
where n is the number of arguments of the function with the greatest number
of arguments.

The maximum number of effective symbols is achieved when each gene
(excepting the first one) encodes a function symbol with the highest number of
arguments. The minimum number of effective symbols is equal to the number
of genes and it is achieved when all genes encode terminal symbols only.

The translation of a MEP chromosome into a computer program represents
the phenotypic transcription of the MEP chromosomes. Phenotypic transla-
tion is obtained by parsing the chromosome top-down. A terminal symbol
specifies a simple expression. A function symbol specifies a complex expres-
sion obtained by connecting the operands specified by the argument positions
with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are:

Elza,
Ey =D,
E4:C,
Es =d,

Gene 3 indicates the operation + on the operands located at positions 1
and 2 of the chromosome. Therefore gene 3 encodes the expression: E3 = a
+ b. Gene 6 indicates the operation + on the operands located at positions 4
and 5. Therefore gene 6 encodes the expression: Fg = ¢+ d. Gene 7 indicates
the operation * on the operands located at position 3 and 6. Therefore gene
7 encodes the expression: E; = (a+0b) * (¢c+d). F7 is the expression encoded
by the whole chromosome.

There is neither practical nor theoretical evidence that one of these expres-
sions is better than the others. This is why each MEP chromosome is allowed
to encode a number of expressions equal to the chromosome length (number
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of genes). The chromosome described above encodes the following expressions:

Elza,
Ey =D,
E3:(l+b,
E4:C,
Es =d,
E6:C+d,

E; =(a+0b) * (c+d).

The value of these expressions may be computed by reading the chromo-
some top down. Partial results are computed by dynamic programming and
are stored in a conventional manner.

Due to its multi expression representation, each MEP chromosome may
be viewed as a forest of trees rather than as a single tree, which is the case of
Genetic Programming.

3.4.4 Fitness Assignment

As MEP chromosome encodes more than one problem solution, it is interesting
to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness of the best expres-
sion encoded by that chromosome.

For instance, if we want to solve symbolic regression problems, the fitness
of each sub-expression F; may be computed using the formula:

F(Bi) = loki — wgl,
k=1

where oy, ; is the result obtained by the expression E; for the fitness case k
and wy, is the targeted result for the fitness case k. In this case the fitness
needs to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in the chromosome:

When we have to deal with other problems, we compute the fitness of
each sub-expression encoded in the MEP chromosome. Thus, the fitness of
the entire individual is supplied by the fitness of the best expression encoded
in that chromosome.

3.5 Machine Learning Techniques
For illustrating the capabilities of GP systems, two popular machine learn-

ing techniques were used namely Decision Trees (DT) and Support Vector
Machines (SVM).
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3.5.1 Decision Trees

Decision tree induction is one of the classification algorithms in data min-
ing. The classification algorithm is inductively learned to construct a model
from the pre-classified data set. Each data item is defined by values of the
attributes. Classification may be viewed as mapping from a set of attributes
to a particular class. The decision tree classifies the given data item using the
values of its attributes. The decision tree is initially constructed from a set
of pre-classified data. The main approach is to select the attributes, which
best divides the data items into their classes. According to the values of these
attributes the data items are partitioned. This process is recursively applied
to each partitioned subset of the data items. The process terminates when all
the data items in current subset belongs to the same class. A node of a deci-
sion tree specifies an attribute by which the data is to be partitioned. Each
node has a number of edges, which are labeled according to a possible value
of the attribute in the parent node. An edge connects either two nodes or a
node and a leaf. Leaves are labeled with a decision value for categorization of
the data.

Induction of the decision tree uses the training data, which is described
in terms of the attributes. The main problem here is deciding the attribute,
which will best partition the data into various classes. The ID3 algorithm [25]
uses the information theoretic approach to solve this problem. Information
theory uses the concept of entropy, which measures the impurity of a data
items. The value of entropy is small when the class distribution is uneven,
that is when all the data items belong to one class. The entropy value is higher
when the class distribution is more even, that is when the data items have
more classes. Information gain is a measure on the utility of each attribute in
classifying the data items. It is measured using the entropy value. Information
gain measures the decrease of the weighted average impurity (entropy) of the
attributes compared with the impurity of the complete set of data items.
Therefore, the attributes with the largest information gain are considered as
the most useful for classifying the data items.

To classify an unknown object, one starts at the root of the decision tree
and follows the branch indicated by the outcome of each test until a leaf node
is reached. The name of the class at the leaf node is the resulting classification.
Decision tree induction has been implemented with several algorithms. Some
of them are ID3 [25] and later on it was extended into algorithms C4.5 [26]
and C5.0. Another algorithm for decision trees is CART [5].

3.5.2 Support Vector Machines (SVMs)

Support Vector Machines [31] combine several techniques from statistics, ma-
chine learning and neural networks. SVM perform structural risk minimiza-
tion. They create a classifier with minimized VC (Vapnik and Chervonenkis)
dimension. If the VC Dimension is low, the expected probability of error is
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low as well, which means good generalization. SVM has the common capabil-
ity to separate the classes in the linear way. However, SVM also has another
specialty that it is using a linear separating hyperplane to create a classifier,
yet some problems can’t be linearly separated in the original input space.
Then SVM uses one of the most important ingredients called kernels, i.e., the
concept of transforming linear algorithms into nonlinear ones via a map into
feature spaces.

The possibility of using different kernels allows viewing learning methods
like Radial Basis Function Neural Network (RBFNN) or multi-layer Artificial
Neural Networks (ANN) as particular cases of SVM despite the fact that the
optimized criteria are not the same [16]. While ANNs and RBFNN optimizes
the mean squared error dependent on the distribution of all the data, SVM
optimizes a geometrical criterion, which is the margin and is sensitive only
to the extreme values and not to the distribution of the data into the feature
space. The SVM approach transforms data into a feature space F that usu-
ally has a huge dimension. It is interesting to note that SVM generalization
depends on the geometrical characteristics of the training data, not on the di-
mensions of the input space. Training a support vector machine (SVM) leads
to a quadratic optimization problem with bound constraints and one linear
equality constraint. Vapnik [31] shows how training a SVM for the pattern
recognition problem leads to the following quadratic optimization problem:

! L1
Minimize: W(a) = — Y a; + 5 > 3 yiyjcuajk(z, z;)
i1

i=1j=1

l
Subject to >y, Vi:0< a; <C
i=1
where [ is the number of training examples «is a vector of [variables and each
component «;corresponds to a training example (x;,y;). SVM Torch software
was used for simulating the SVM learning algorithm for IDS.

3.6 Experiment Setup and Results

The data for our experiments was prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Labs [19]. The data set has 41
attributes for each connection record plus one class label as given in Table
3.1. The data set contains 24 attack types that could be classified into four
main categories:

DoS: Denial of Service. Denial of Service (DoS) is a class of attack where
an attacker makes a computing or memory resource too busy or too full to
handle legitimate requests, thus denying legitimate users access to a machine.
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Table 3.1. Variables for intrusion detection data set

Variable No.  Variable name Variable type  Variable label
1 duration continuous A

2 protocol_type discrete B

3 service discrete C

4 flag discrete D

5 src_bytes continuous E

6 dst_bytes continuous F

7 land discrete G

8 wrong_fragment continuous H

9 urgent continuous I

10 hot continuous J
11 num_failed_logins continuous K
12 logged_in discrete L
13 num_compromised continuous M
14 root_shell continuous N
15 su_attempted continuous O
16 num_root continuous P
17 num_file_creations continuous Q
18 num_shells continuous R
19 num_access_files continuous S
20 num_outbound_cmds continuous T
21 is_host_login discrete U
22 is_guest_login discrete \%
23 count continuous A%
24 srv_count continuous X
25 serror_rate continuous Y
26 srv_serror_rate continuous X
27 rerror_rate continuous AA
28 srv_rerror_rate continuous AB
29 same_srv_rate continuous AC
30 diff_srv_rate continuous AD
31 srv_diff_host_rate continuous AE
32 dst_host_count continuous AF
33 dst_host_srv_count continuous AG
34 dst_host_same_srv_rate continuous AH
35 dst_host_diff_srv_rate continuous Al
36 dst_host_same_src_port_rate continuous AJ
37 dst_host_srv_diff_host_rate continuous AK
38 dst_host_serror_rate continuous AL
39 dst_host_srv_serror_rate continuous AM
40 dst_host_rerror_rate continuous AN

41 dst_host_srv_rerror_rate continuous AO
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R2L: Unauthorized Access from a Remote Machine. A remote to user
(R2L) attack is a class of attack where an attacker sends packets to a machine
over a network, then exploits the machine’s vulnerability to illegally gain local
access as a user.

U2Su: Unauthorized Access to Local Super User (root). User to root
(U2Su) exploits are a class of attacks where an attacker starts out with access
to a normal user account on the system and is able to exploit vulnerability to
gain root access to the system.

Probing: Surveillance and Other Probing. Probing is a class of attack
where an attacker scans a network to gather information or find known vulner-
abilities. An attacker with a map of machines and services that are available
on a network can use the information to look for exploits.

Experiments presented in this chapter have two phases namely training
and testing. In the training phase, MEP /LGP models were constructed using
the training data to give maximum generalization accuracy on the unseen
data. The test data is then passed through the saved trained model to detect
intrusions in the testing phase. The 41 features are labeled as shown in Table
3.1 and the class label is named as AP.

This data set has five different classes namely Normal, DoS, R2L, U2R
and Probes. The training and test comprises of 5,092 and 6,890 records respec-
tively [13]. All the training data were scaled to (0-1). Using the data set, we
performed a 5-class classification. The normal data belongs to class 1, probe
belongs to class 2, denial of service belongs to class 3, user to super user
belongs to class 4, remote to local belongs to class 5.

The settings of various linear genetic programming system parameters are
of utmost importance for successful performance of the system [1]. The various
parameter setting for LGP is depicted in Table 3.2

Table 3.2. Parameter settings for LGP

Parameter Normal Probe DoS  U2Su R2L
Population size 2048 2048 2048 2048 2048
Maximum no of tournaments 120000 120000 120000 120000 120000
Tournament size 8 8 8 8 8
Mutation frequency (%) 85 82 75 86 85
Crossover frequency (%) 75 70 65 75 70
Number of demes 10 10 10 10 10

Maximum program size 256 256 256 256 256
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(d) U2R attacks

Our trial experiments with SVM revealed that the polynomial kernel op-
tion often performs well on most of the attack classes. We also constructed
decision trees using the training data and then testing data was passed through
the constructed classifier to classify the attacks [22].
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Parameters used by MEP are presented in Table 3.3 [9]. We made use of
+, —, %, /, sin, cos, sqrt, In, lg, log,, min, max, and abs as function sets.

Experiment results (for test data set) using the four techniques are de-
picted in Table 3.4. In Table 3.5 the variable combinations evolved by MEP
are presented.
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As evident from Table 3.5, the presented GP techniques out performed
some of the most popular machine learning techniques. MEP performed well
for Classes 1, 4 and 5 while LGP gave the best test results Classes 2 and 3.

MEP performance is illustrated in Figures 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8.
The classification accuracy for the best results obtained for training data,
average of results obtained for the test data using the best training function
and the best results obtained for the test data are depicted. Figures 3.3 (a)
and (b) correspond to Normal, and Probe attacks, Figures 3.4 (¢) and (d)
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Fig. 3.12. Growth of program codes for U2R attacks

corresponds to DOS and U2R attacks and Figure 3.5 (e) corresponds to R2L
attacks respectively.

In Figures 3.6- 3.8, the average of the classification accuracies for the
results best results obtained for training data, results obtained for the test
data and the obtained for the training data are depicted. Figures 3.6 (a)
and (b) corresponds to Normal and Probe attacks, Figures 3.7 (¢) and (d)
corresponds DOS and U2R attacks and Figure 3.8 (e) corresponds to R2L
attacks respectively.



76 Abraham and Grosan
4 )
R2L
250 +
200 -|
K=
5 1504
<
2
3
S 100 -
o
50 -
L L e o L e e e e UL B o e
o o o o o o o o o o o o o o o (=3 o o o o o
o o o o o o o o o (=3 o o o o [=3 o o o o o
o o (=3 o o o o (=3 o o (=] o (=3 o (=3 (=] o (=] o o
© Y] @© < (=3 © o @ < (=3 © N @ < [=3 © o @ < o
— — [\ (3] (3] < < 0 © © ~ ~ [=o) (s>} (<) o o — A
—a— Average Length —— Best length No. of tournaments )

Fig. 3.13. Growth of program codes for R2L attacks

Table 3.3. Parameters used by MEP

Attack type

Parameter value

Pop. Size Generations Crossover No. of Chromosome
(%) mutations length
Normal 100 30 0.9 3 30
Probe 200 200 0.9 4 40
DOS 250 800 0.8 5 40
U2R 100 20 0.9 3 30
R2L 100 800 0.9 4 40

Table 3.4. Functions evolved by MEP

Attack type

Evolved Function

Normal

Probe

DOS

U2R
R2L

varl2 x logz (varl0 + var3)

(fabs(var30+ var3b)) < (var26 + var27)?( fabs(var30 +
var3b)) : (var26 + var27);

return(var38 — (Ln(vardl x var6) + sin(Lg(var30))) —
(Lg(var30) — (vardlxvar6))) > (0.3415+var24+vardl *
var6)?(var3d8 — (Ln(vardl = var6) + sin(Lg(var30))) —
(Lg(var30) — (vardl xvar6))) : (0.3415 + var24 + vardl *
var6) + var8

sin(varld) — var33

fabs((fabs(var8 > (varl + (var6 > (Ln(var6))?var6 :
(Ln(var6))) = wvard)?varl0 : (varl + (var6 >
(Ln(var6))?var6 : (Ln(var6))) * vard))) = (varl2 +
var6)) + varll
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Table 3.5. Performance comparison

Classification accuracy on test data set (%)

Attack type

MEP DT SVM LGP
Normal 99.82 99.64 99.64 99.73
Probe 95.39 99.86 98.57 99.89
DOS 98.94 96.83 99.92 99.95
U2R 99.75 68.00 40.00 64.00
R2L 99.75 84.19 33.92 99.47

Figures 3.9 - 3.13 illustrate the growth in the program codes during the 120
tournaments during the development of LGP models. The best and average
code length is depicted during the evolutionary learning.

In some classes the accuracy figures tend to be very small and may not
be statistically significant, especially in view of the fact that the 5 classes of
patterns differ in their sizes tremendously. For example only 27 data sets were
available for training the U2R class. More definitive conclusions can only be
made after analyzing more comprehensive sets of network traffic.

3.7 Conclusions

This chapter illustrated the importance of GP techniques for evolving intru-
sion detection systems. MEP outperforms LGP for three of the considered
classes and LGP outperform MEP for two of the classes. MEP classification
accuracy is grater than 95% for all considered classes and for three of them is
greater than 99.75%. It is to be noted that for real time intrusion detection
systems MEP and LGP would be the ideal candidates because of its simplified
implementation.
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