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ABSTRACT 
Today, designers and engineers on collaborative design environments often work in parallel and 
independently using different tools distributed at separate locations. Due to unique characteristic of 
engineering design, interaction during product development is difficult to maintain. As the information 
and communication technologies advance, computer supported collaborative design (CSCD) becomes 
more promising. Nevertheless, a potential problem remains between the product design and 
manufacturing, which primarily lies on the geometric shape of products that exists inherent in mass-
customization. Meanwhile, each CAD/CAM technology has ist own authoring tools, which govern the 
use of independent language and format for expressing various features and geometry. This condition 
creates incompatibility and has significant impact to the product costs. This chapter is to address the 
incompatibility problem by introducing the architecture of a multiagent-based product data 
communication system. The developed system is adaptive and has a capability for autonomous 
tracking of design changes. The tracking model is able to support forward and backward tracking of 
constraint violation during the collaborative design transactions. 
 
BACKGROUND 
Today’s industry requires massive computer-supported technologies to address the increasingly 
complex product development tasks and the high expectations of customers. As the information and 
communication technologies advance, the application of collaborative engineering to product design, 
so-called computer supported collaborative design (CSCD), becomes more promising.  

Sprow (1992) defines CSCD, or so-called cooperative design, as the process of designing a 
product through collaboration among multidisciplinary product developers associated with the entire 
product life cycle. CSCD is carried out not only among multidisciplinary product development teams 
within a company, but also across the boundaries of companies and time zones, with increased 
numbers of customers and suppliers involved in the process. 

Accomplishing a design task and delivering the results to manufacturing requires immense and 
complex information. Currently, most CAD/CAM technologies govern independent authoring tools in 
different proprietary formats. Meanwhile, a potential problem between design and manufacturing 
remains in the geometric shape of products, which mainly exists inherent in mass-customization. For 
instance, creating ‘thread’ on a screw using the thread feature operation in the Autodesk Inventor as 
depicted in Figure 1. This feature often cannot be recognized when the design is transferred and read 
using another CAD/CAM system (e.g., Solidworks). Or, in some cases it will be recognized with 
certain deviation of dimensions and tolerances. This condition creates incompatibility problem. 
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Failures in the final design requires engineer to perform design rework, which has significant impact 
to the product costs. Furthermore, if failures are recognized after the design being manufactured, it 
will result in such condition the whole products to be rejected.  

 
Figure 1.  Screw: (a) original design created by Autodesk Inventor, (b) original design read  

                        in Solidworks, (c) translated design to neutral file in Solidworks. 
 

 

 

 

(a)  (b)  (c) 
 
In collaborative design environment, the design – build – test cycle is performed by designers 

and engineers who work with various application systems in geographically distributed locations. 
When change is applied on a part, changing of shapes or dimensions will create constraints 
propagation to the adjacent parts that might affect the overall performance of the product. In this 
regard, the ability to tracking design changes becomes important. Therefore, the synchronization of 
product data communication along product development process is necessary to take place. 

This chapter aims to address the incompatibility problem in the collaborative design 
environment. To support design exchange, a multiagent based product data communication system is 
introduced. The adaptive system is developed on the Cloud technology, where a shared server 
provides resources, software and data to designers and engineers to perform on-demand real-time 
collaborative work at remote locations. The data communication network is designed based on the 
seven-layers ISO/OSI model. The ISO/OSI network is an Open System Interconnect (OSI) model 
developed by the International Standards Organization (ISO) in 1984 (ISO, 1992) as a conceptual 
framework for communication in the network across different equipment and applications by different 
vendors. Today, ISO/OSI model is considered as the primary architectural model for intercomputing 
and internetworking communications. 

In the following paragraphs, Section 2 describes the conceptual framework of computer 
supported collaborative design (CSCD) and the applications of Cloud Computing and agent-based 
technologies, Section 3 explains the architecture of the multiagent based product data communication 
system, Section 4 provides an illustration on the system’s capability for tracking of design changes. 
Finally, Section 5 provides the conclusion of current work and a direction for future works. 
 
COMPUTER SUPPORTED COLLABORATIVE DESIGN 
Many researchers consider CSCD as an application of computer supported cooperative work (CSCW) 
in design. The term CSCW was first used by Greif and Cashman in 1984 to describe a way to support 
people in their work arrangements with computers (Greif, 1988; Schmidt and Bannon, 1992). 
Engineering design has some unique characteristics (e.g., diverse and complex forms of information, 
interdisciplinary collaboration, and heterogeneous software tools), which make interactions difficult to 
support. Therefore, design has become one of the most important applications of CSCW technologies. 

According to Shen, Hao and Li (2008), an important objective of CSCD is to address the 
insufficient or even absent manufacturability checks concurrently by detecting and considering 
conflicts and constraints at earlier design stages. To support collaborative design, information and 
communication technologies are used to augment the capabilities of the individual specialists, and 
enhance the ability of collaborators to interact with each other and with computational resources.  

With the rapid advancement of Web-based technology, CSCD has progressed dramatically. 
The depth and breadth of CSCD applications are far beyond the traditional definition of concurrent 
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engineering. Moreover, the application of agent-based technology has been investigated to be effective 
to enhance communication, cooperation and coordination amongst design team as well as software 
tools. Today, the need to dynamically provide resources of various kinds as services which are 
provisioned electronically in the collaborative design environment has lead to the use of Cloud 
Computing. In this framework, services should be available in a reliable and scalable way so that 
designers and engineers can use them, either explicitly upon request or simply as and when required. 
 
Web-based Technology 
The Web was originally developed for information sharing within internationally dispersed teams and 
the dissemination of information by support groups. Since its emergence in the early of 1990s, the 
Web has been quickly adopted into the collaborative design environment to publish and share 
information relevant to the design process, from concept generation and prototyping to virtual 
manufacturing and product realization. A CSCD system developed with the Web as a backbone will 
primarily provide access to catalogue and design information on components and sub-assemblies, 
communication amongst multidisciplinary design team members, and authenticated access to design 
tools, services and documents (Shen et al., 2008). The Web can be integrated with other related 
technologies and used for product data management.  

Along with the Web, a number of associated representation technologies have been developed, 
such as Hyper Text Mark-up Language (HTML), eXtensible Mark-up Language (XML), and Virtual 
Reality Mark-up Language (VRML)  to enable better cross-platform and cross-enterprise exchange of 
multimedia information and design models (Ane and Roller, 2011). Many early collaborative design 
systems were developed using the Blackboard architecture (Jagannathan, Dodhiawala, & Baum, 1989) 
and distributed-object technologies like CORBA (Common Object Request Broker Architecture) 
(Object Management Group, 2008), COM (Component Object Model) (Box, 1998), and DCOM 
(Distributed Component Object Model).  

A blackboard architecture is a distributed computing architecture, where distributed 
applications modeled as intelligent agents share a common data structure, called the “blackboard”, and 
a scheduling/control process. The Common Object Request Broker Architecture (CORBA) is an 
architecture and specification for creating, distributing, and managing distributed program objects in a 
network. Developed by the Object Management Group (OMG), CORBA allows programs at different 
locations and developed by different vendors to communicate in a network through an "interface 
broker." The Component Object Model (COM) is an architecture and infrastructure for building fast, 
robust, and extensible component-based software. The COM is merely a language-independent binary-
level standard defining how software components within a single address space can efficiently 
rendezvous and interact with each other and, at the same time, retaining a sufficient degree of 
separation between these components so that they can be developed and evolved independently. 
While, the Distributed Component Object Model (DCOM) is a seamless evolution of COM, developed 
by Microsoft. DCOM (Distributed Component Object Model) provides a set of concepts and program 
interfaces, in which client program objects can request services from server program objects on other 
computers in a network in a reliable, secure, and efficient manner. 

Most Web-based collaborative design systems are developed using Java and CORBA 
(Jagannathan, Almasi, & Suvaiala, 1996; Wallis, Haag, & Foley, 1998; Huang and Mak, 1999a). Some 
others are developed using Common Lisp, i.e., WWDL (Zdrahal and Domingue, 1997), and Prolog, 
i.e., WebCADET (Caldwell and Rodgers, 1998). In addition to HTML and Java Applets, ActiveX 
(Huang, Lee, & Mak, 1999; Huang and Mak, 1999b) and VRML (Zdrahal and Domingue, 1997; 
Wallis et al., 1998) are widely used for developing client-side user interfaces. 

In Figure 2, a Web-based collaborative design system on three-tier communication framework 
is illustrated. In this framework, the wide-area networks and the internet-based WWW infrastructure 
allow to develop intelligent knowledge servers. Using the knowledge-based expert system running on 
servers, a large-scale group of users can communicate with the system over the network (Xuan, Xue, 
& Ma, 2009). 
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Figure 2.  Web-based collaborative design on three-tier communication framework  
                              (Source: Xuan, Xue, & Ma, 2009). 
 

 
 

However, the Web technology alone is not a complete solution to collaborative design 
systems, although it makes remote communication physically viable through a common network. 
Collaborative design involves not design activity solely, but also the translation of terminology 
amongst disciplines as well as locating and providing distributed engineering analysis services. Thus, 
the Web servers should not only be a repository of information, but also provide intelligent services to 
assist users to solve design problems. In this regard, the application of software agents offers potential 
to improve the efficiency of collaborative design.  

 
Agent-based Technology 
In agent-based collaborative design, software agents are mostly used for supporting cooperation 
amongst designers, enhancing interoperability between traditional computational tools, or allowing 
better distributed simulations. An agent-based collaborative design system is a loosely coupled 
network of problem solvers that work together to solve complex problems that are beyond their 
individual capabilities (Shen et al., 2008). Software agents in such systems are communicative, 
collaborative, autonomous, reactive (or proactive), and intelligent.  

Conceptually, an agent is defined as a computer system that is situated in some environment, 
and that is capable of autonomous action in this environment in order to meet its design objective 
(Weiss, 1999). Autonomous means that agents are able to act without the interventions of humans and 
other systems. They have control both over their own internal state and over their behavior. 

An agent in collaborative design plans and solves the local problems of modular design by the 
design-related knowledge. Each agent is a knowledge system which solves the modular design 
problem based on their knowledge base. But the complexity of the solved problems and the size of 
knowledge base are less than the requirements of centralized design. Figure 3 illustrates an agent 
structure model for collaborative design. The main components comprise of human-computer 
interaction interface, sensor, effectors, executable controllers, functional module, evaluator, 
communication mechanism and agent private knowledge base (Ming, Jinfei, Qinghua, & Yuan, 2010). 

Agents will typically sense their environment, i.e., by physical sensors or software sensors, 
and will have available a repertoire of actions that can be executed to modify the environment, which 
may appear to respond non-deterministically to the execution of these actions. An intelligent agent is 
one that is capable of flexible autonomous action in order to meet its design objectives. In this 
definition, the term of flexibility refers to reactivity, pro-activeness, and social ability. Reactivity 
represents the ability of the intelligent agents to perceive their environment, and respond in a timely 
fashion to changes that occur in it in order to satisfy their design objectives. Pro-activeness means that 
the intelligent agents are able to exhibit goal-directed behavior by taking the initiative in order to 
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satisfy their design objectives. Social ability refers to the capability of the intelligent agent to interact 
with other agents (and possibly humans) in order to satisfy their design objectives. 

 
Figure 3.  Agent structure model for collaborative design 

                                                    (Source: Ming, Jinfei, Qinghua, & Yuan, 2010). 
 

 
 

Agents operate and exist in some environment, which typically is both computational and 
physical. At times, the increasing interconnection and networking of computers makes such situation 
rare, in the usual state of affairs the agent will interact with other agents. Then, it is more convenient to 
deal with them collectively, as a society of agents. Multiagent systems are the best way to characterize 
or design distributed computing systems. Multiagent environments have some characteristics: (1) 
typically open and have no centralized designer, (2) provide an infrastructure specifying 
communication and interaction protocols, and (3) contain agents that are autonomous and distributed, 
and may be self-interested or cooperative. The rationale for interconnecting computational agents and 
expert systems is to enable them to cooperate in solving problems, to share expertise, to work in 
parallel on common problems, to be developed and implemented modularly, to be fault tolerant 
through redundancy, to represent multiple viewpoints and the knowledge of multiple experts, and to be 
reusable. 

Prior research projects have demonstrated the application of software agents to collaborative 
design (Shen et al., 2008). PACT (Cutkosky et al., 1993) was considered as one of the earliest 
successful projects in this area. The interesting aspects of PACT include its federation architecture 
using facilitators and wrappers for legacy system integration. SHARE (Toye, Cutkosky, Leifer, 
Tenenbaum, & Glicksman, 1993)  was concerned with developing open, heterogeneous, network-
oriented environments for concurrent engineering, particularly for design information and data 
capturing and sharing through asynchronous communication. DIDE (Shen & Barthes, 1995)  was 
developed to study system openness, legacy systems integration, and distributed collaboration. ICM 
(Fruchter, Reiner, Toye, & Leifer, 1998)  developed a shared graphical modelling environment for 
collaborative design activities. A-Design (Campbell, Cagan, & Kotovsky, 1999)  presented a new 
design generation methodology, which combines aspects of multi-objective optimization, multi-agent 
systems, and automated design synthesis. It provided designers with a new search strategy for the 
conceptual stages of product design that incorporates agent collaboration with an adaptive selection of 
design alternatives.  

 
A successful implementation of CSCD needs a series of new strategies for efficient 

communication amongst multidisciplinary groups, an integration of heterogeneous software tools to 
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realize obstacle-free engineering information exchange and sharing. In addition, a strategy is also 
needed for interoperability to manipulate downstream manufacturing applications as services to enable 
designers to evaluate manufacturability or assembleability as early as possible (Li, Ong, & Nee, 2006). 
 
Cloud Computing 
In current practice, the collaborative design systems is developed on an integrated Web- and agent-
based technologies using the client/server architecture, in which the interaction and communication 
between agents are predefined. Due to the nature of collaborative design, the dynamic design tasks are 
usually involving complex and non-deterministic interactions on heterogeneous and distributed 
systems. This yields results that might be ambiguous and incomplete. On the other hand, designers and 
engineers intend to perform real-time collaborative works, where multiple users are able to share files 
and work on the same document simultaneously. This requirement becomes the driving force behind 
the use of Cloud Computing in collaborative design. 

Baun, Kunze, Nimis, & Tai (2011) defines Cloud Computing as a technology that provides 
scalable, network-centric, abstracted information technology (IT) infrastructures, platforms, and 
applications as on-demand services, by using virtualized computing and storage resources and modern 
Web technologies. These services are billed on a usage basis. In this context, Cloud Computing uses 
virtualization and the modern Web to dynamically provide resources of various kinds as services 
which are provisioned electronically. These services should be available in a reliable and scalable way 
so that designers and engineers can use them either explicitly on-demand or simply when required. 

However, this definition does not specify whether the services are provided by a distributed 
system or a single, high-performance server. This is in contrast to Grid Computing which always uses 
a distributed system. In general, Cloud services rely on a distributed infrastructure, but their 
management is typically determined in a central and proprietary manner by a single provider. This is 
another difference between Cloud Computing and Grid Computing where distributed nodes are 
usually autonomous (Wang, 2009). 

The National Institute of Standards and Technology (NIST) in the U.S. (2010) specifies five 
essential characteristics of Cloud environment: 
� On-demand self-service: Services can be provided unilaterally and on-demand to consumers 

without requiring human interaction. 
� Broad network access: Services are available over the network in real-time through standard 

mechanisms. 
� Resource pooling: The resources are pooled to enable parallel service provision to multiple users 

(multi-tenant model), while being adjusted to the actual demand of each user. 
� Elasticity: Resources are rapidly provisioned in various, fine-grained quantities so that the 

systems can be scaled as required. To the users, the resources appear to be unlimited. 
� Measured quality of service: The services leverage a quantitative and qualitative metering 

capability so that usage-based billing and validation of the service quality are possible. 

Some of Cloud technologies that suitable to make effective use of the resources through different 
varieties of Cloud provision in the collaborative design environments are: 
� OpenNebula:   This is a fully open-source toolkit to build an ‘Infrastructure as a Service’ (IaaS), 

whether private, public or hybrid. The toolkit orchestrates storage, network, virtualization , 
monitoring and security technologies to enable the dynamic placement of multi-tier services on 
distributed infrastructures (OpenNebula, 2010). The benefits include centralized management, 
higher utilization of existing resources, scalability of services to meet dynamic demands and 
seamless integration of IT resources (Mahmood and Hill, 2011). 

� CA 3Tera AppLogic:   This is an application-centric Cloud Computing platform and a key 
component of Cloud solutions provided by the CA Technologies (CA Technologies, 2010). It 
allows for composing, running and scaling distributed applications and uses virtualization 
technologies to be completely compatible with existing operating systems, middleware and Web 
applications. The platform eliminates the binding of software and hardware through 
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virtualization. The applications are assembled using completely self-contained independent 
software components (Mahmood & Hill, 2011). 

The collaborative design systems, unlike distributed systems which are interconnected over local 
networks, they use the distributed Cloud Computing systems that integrate heterogeneous resources, 
which could be located at any place on this earth where an Internet connection is available. In such 
environments, it is recommended to use a loosely coupled, asynchronous, message-based 
communication via Web services (Mahmood & Hill, 2011). 
 
Web Service 
As defined by the Web Services Architecture Working Group of the World Wide Web Consortium 
(W3C), a Web service is a software application identified by a uniform resource identifier (URI), 
whose interfaces and binding are capable of being defined, described and discovered by XML artifacts 
and supports direct interactions with other software applications using XML based messages via 
internet-based protocols (W3C, 2002). Meanwhile, Wohlstadter and Tai (2009) define Web services as 
distributed middleware, which enables machine-to-machine communication on the basis of Web 
protocols.  

The Web services are determined by the intended use of technology to provide services for the 
specified needs. They propagate a compositional approach for application development. Functions can 
be integrated into an application using external or distributed services. 

With regard to interoperability, the Web services describe the standards required to format and 
process messages as well as the standards for service interfaces. There are two approaches of 
interoperability. The first approach is SOAP/WSDL-based Web services. SOAP is a messaging 
protocol and WSDL (Web Services Description Language) is an interface description language. Thus, 
SOAP/WSDL-based services have programmatic interfaces. The second approach is RESTful 
(REpresentational State Transfer) services. REST describes a style of software architecture, which is 
built on top of HTTP. RESTful services can only be invoked from the uniform HTTP interface. Both 
SOAP/WSDL-based Web services and RESTful use uniform resource identifiers (URIs) to identify 
the required services (Baun et al., 2011). 
 
MULTIAGENT-BASED PRODUCT DATA COMMUNICATION SYSTEM 
In order to solve the existing problem of incompatibility that exists in collaborative design, in this 
section the architecture of multiagent-based product data communication system is introduced. The 
system is developed on a private Cloud network using the integrated Web- and agent-based 
technologies that enables communication and coordination amongst multiple users in the collaborative 
design environment.  

The system architecture uses a centralized database that can be shared during the collaborative 
design transactions. The product database is designed on an active semantic network (ASN), i.e., a 
network of nodes and links, where the nodes represent objects of the real world and the links relations 
amongst these objects. The ASN can handle and manage the increasing amount of knowledge during 
the design process (Roller, Eck, Bihler, & Stolpmann, 1995; Roller & Eck, 1997; Thiel, Dalakakis, & 
Roller, 2005). The active component is able to make inferences and activate external actions (e.g., at a 
graphical user interface). Considering the complexity of engineering parts, feature taxonomy and data 
dictionary are built as reference in the database. 

In this architecture, as it has been mentioned the data communication network is designed on 
the seven-layers ISO/OSI network model. The OSI model defines the communications process into 
seven layers, which divides the tasks involved with the moving information between networked 
computers into smaller and more manageable task groups. A task or group of tasks is then assigned to 
each of the seven OSI layers. In the following paragraphs, each component of the system is discussed. 
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The ISO/OSI Communication Network 

The seven-layers OSI model divides the communication process into seven layers, i.e., physical, data-
link, network, transport, session, presentation, and application layers. Each layer is reasonably self-
contained so that the tasks assigned to each layer can be implemented independently. This enables the 
solutions offered by one layer to be developed and replaced without adversely affecting the other 
layers. Figure 4 describes the ISO/OSI Product Data Communication Network. 

Layers 1 to 3 deal with communications between network devices. The physical layer defines 
the electrical and mechanical specification of data transmission devices. This layer performs major 
function and service for the establishment and termination of a connection to a communications 
medium. It also performs modulation, or conversion, between the representation of digital data in user 
equipment and the corresponding signals transmitted over a communications channel. The data-link 
layer provides frames across a single local area network (LAN), which functions to define the 
resolution of contention for the use of shared  transmission  medium, delimitation and  selection of 
frames addressed to given nodes, detection of noise through frame-check sequence, and any error 
correction or retries performed within the LAN. The network layer provides the functional and 
procedural means of transferring variable length data sequences from a source host on one network to 
a destination host on a different network, while maintaining the quality of service requested by the 
transport layer. 

Layers 4 to 7 deal with end-to-end communications between data source and destinations. The 
transport layer provides transparent data transfer between end-users, providing reliable data transfer 
services to the upper layers by ensuring that data units are delivered error-free, in sequence, with no 
losses or duplications. The session layer controls the dialogues between computer systems during a 
communication session. This layer establishes, manages and terminates the connections between the 
local and remote application. It provides full-duplex operation, and establishes check-point, 
adjournment, termination, and restart procedures. The presentation layer establishes context between 
application-layer entities, in which the higher-layer entities may use different syntax and semantics if 
the presentation service provides a mapping between them. Finally, the application layer defines the 
user interface for communication process and data transfer in a network. It interacts with software 
applications (e.g., Autodesk Inventor, Solidworks, etc.) which implement communication components. 
This layer functions for determining resource availability as well as synchronizing communication 
process. 

 
Figure 4. ISO/OSI Product Data Communication Network. 
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When data is sent from workstation A to workstation B, it goes down the layers. At each layer, 
a control message is appended to the data. Then, the complete data is transmitted through the ISO/OSI 
medium to workstation B. At each layer of workstation B, the control message is stripped and proper 
actions are taken to convert the data into a proper format. In our network model, two CAD/CAM/CAE 
authoring tools are implemented at the application layer, i.e., Autodesk Inventor and Solidworks. At 
the presentation layer, the engineering design is then communicated through a middleware on HTML, 
XML, and VRML formats. In this layer, design intent is further encoded/decoded into the neutral 
format for data storage and retrieval purposes. Finally, the design entities are encrypted/decrypted and 
store in the database in ASCII (American Standard Code for Information Interchange) code. The 
product database divides into three object-oriented databases (OOD), i.e., design, manufacturing, and 
process planning databases. The active OOD allows users to specify actions to be taken automatically 
by agents given certain rules when certain conditions arise (Roller and Eck, 1998). In the following 
subsection, the concept of multiagent system is discussed.   

 
Multiagent System 
On the aforementioned architecture, the product data communication system runs on an intelligent 
knowledge server, which embodies two capabilities of intelligent and learning agents. The intelligent 
agent is responsible to identify the part identity (i.e., part name, ID, date of creation, creator, model, 
and sub-assemblies), design (i.e., geometry, topology, dimensions, and constraints), and function 
based on the existing data dictionary built in the system, as well as to define similarity of a part 
amongst others based on its function or model. When a new design is introduced, the learning agent 
acts to learn the new function. Then, the agent measures similarity of the new part in comparison with 
the existing ones, extract related design information, create new identity and, finally, register and store 
it as a new entity in the data dictionary.  

The aspect of learning is essential for agents. Agents are assumed to be situated in a flexible 
environment which they can modify while pursuing their own goals. In this environment, the agents 
are proactive in that they may initiate certain goal-oriented behavior. A learning agent can easily adapt 
with a changing environment by extending and modifying its behavior according to its own 
experience, i.e, by changing existing rules or adding new rules (Borghoff & Schlichter, 2000). Figure 
5 describes learning triggered by a user agent. The user agent learns either by interacting with other 
agents, or by communicating with the users (e.g., designers, engineers, managers, etc.).  The learning 
process can be based on user feedback, explicit user programming by examples, or by observing user 
interactions with the applications.  
 

Figure 5. Learning of a user agent (Source: Borghoff & Schlichter, 2000).  
 

 
 

The product data communication system is developed as an adaptive system. Here, the term of 
adaptive represents the ability of agents to adapt with changes in environment that commonly source 
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from the changing of product database, application programs, data structure and formats, in such a 
manner in order to improve the system’s future performance (Ane & Roller, 2011). Based on the 
ability of the learning agent to modify or add rules, the design knowledge can be up-dated on regular 
basis, thus, they are reusable. Since the design knowledge is developed on an active database system, 
hence, in the following subsection the active semantic network is going to be discussed.   
 
The Active Semantic Network 
The Active Semantic Network (ASN) is a shared database system developed for supporting designers 
during product development and is realized as an active, object-oriented database system. The ASN 
uses mechanisms of distributed database systems to distribute design objects in a heterogeneous 
environment and to allow distributed access to shared data. The goal of the ASN is to represent all 
knowledge relevant to the product development process and to support geographically distributed 
product design teams (Roller, Eck, Bihler, & Stolpmann, 1995). 

Concepts of cooperative transaction models allow a group-oriented access to shared objects by 
multiple users (Roller, Bihler, & Eck, 1997). The objects in the database consist of three parts: the data 
itself, a set of associated rules, and locking objects for realizing the cooperative transaction system. 
Cooperative access to shared objects is realized by extended locking mechanisms which use 
knowledge about users and user groups in the knowledge base to support collaborative works.  

Figure 6 depicts the structure of the ASN. The most important parts in this structure are a meta 
model to specify the structure of the ASN, a database-independent programming interface, an active 
component for rule processing, a cooperative transaction model and a distributed object management. 
The active component of the ASN is able to propagate changes at one node of the semantic network 
across the whole network, as well as to signal inconsistencies and conflicts to the responsible users, 
and start external actions (e.g., at the graphical user interface). 

Before a constraint can be propagated, it has to be modelled. As illustration, a basic geometric 
constraint problem of piston is described in Figure 7. The performance of a piston is affected by the 
rotation of crankshaft that is supported by the piston rod. The crankshaft is represent as a circle where 
the center of the circle will be the axis of the crankshaft and the circumference represents the rotation 
of the center of the journal. The piston rod is represented as a straight line. The piston and the top of 
the piston rod travel at the same vertical velocity. Representation of piston in the object-oriented 
product model is described in Figure 8.  In this representation, there is a dependency between a piston 
and a rod, which is a simple constraint between different objects.  

In the following step, rules are used to evaluate parameters inside the 2-dimensional geometric 
objects (e.g., ellipse, triangle, etc.) and define the geometric constraints. Here, constraints propagation 
is realized through the Event-Condition-Action (ECA) rules. According to McCarthy and Dayal 
(1989), the ECA rules have the following attributes: 
� An Event triggers a rule. 
� A Condition is a collection of queries that are evaluated when the rule is triggered. 
� An Action is executed when the rule is triggered and its condition is satisfied. 

Using the ECA rules, the geometric constraints can be modeled in the following way: 
� Event is a write operation on one of the variables of a constraint. 
� Condition is a collection of queries that check if the constraint is satisfied. 
� Action is executed if the constraint is not satisfied. in order to satisfy it. 
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Figure 6. Structure of the Active Semantic Network 
 

 
 
 

Figure 7.  Piston: (a) product model, (b) definition of design problem. 
 

 

 

 
(a)  (b) 

 



Page 12 of 33 
 

Applying the ECA rules, constraints between different objects of piston can be modeled in the 
ASN.  In constraint modeling, a new object is created which represents the geometric constraint itself. 
Objects in the network which model no real item in the real world but properties like ‘relationships’ or 
‘constraints’, are called ”virtual objects” in the ASN. Figure 9 shows the virtual object ”Constraint =”. 
The constraint concept ”Identical” describes the identity of two geometry parts, and the instance of 
this concept models the fact that the instances ”piston” and ”rod” have the same geometry. 

 
Figure 8.  The object-oriented product model of piston. 

 

 
 
 

The complete specification of all dependencies amongst all variables of a constraint is only 
possible, if the constraint describes in mathematical objects well represents the geometric objects. 
Here, the piston-crankshaft mechanism can be abstracted as a geometric constraint solving problem 
comprising five points pi, 1 � i � 5, and a straight line li. Figure 10 depicts geometric constraint  for 
the piston-crankshaft mechanism (Cundy & Rollet, 1961; Hoffmann & Joan-Arinyo, 2005).  
 

 
 
 
 
 



Page 13 of 33 
 

Figure 9.  Representation of constraints in Active Semantic Network. 
 

 
 
 

Figure 10.  Piston and crankshaft mechanism: (a) actual mechanism, (b) geometric problem 
                         (Source: Hoffmann & Joan-Arinyo, 2005). 

 

 

 
(a)  (b) 

 
In the following process, a set of constraints which includes point-to-point distances, dpp(.), 

and coincidences, on(.), can be defined: 
dpp(p1, p2)  =  d1 on(p1, l1) 
dpp(p2, p3)  =  d2 on(p2, l1) 
dpp(p3, p4)  =  d3 on(p3, l1) 
dpp(p4, p5)  =  d4 on(p5, l1) 
dpp(p1, p5)  =  d5  
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Based on given constraints, a constraint graph is developed to study the propagation of a constraint 
across the network as depicted in Figure 11. Furthermore, the constraint graph can also be used to 
analyze whether a system of equations is under-, well- or over-constrained from the system structure.  
 

Figure 11.  Constraint graph of piston-crankshaft mechanism. 
 

 
 

In the piston-crankshaft mechanism, the speed of a piston is significantly affected by the 
connecting rod, s = ((d1 – d5) + d2). For instance, if p5 is modified from p1, this condition affects 
constraint d5 that propagates to constraints d1 as well as the optimal distance, s. Using the Law of 
Cosines (Rollins, 2012), finally, the optimal s can be found: 

                                          ܾଶ ൌ ଶݏ� ൅ ଶݎ െ ʹ ݎ ݏ ���ሺߠሻ (eq.-1)

��ݏ                                            ൌ ݎ� ���ሺߠሻ ൅ ඥܾଶ െ ଶݎ ��� ሺߠሻଶ (eq.-2)

��ݏ ൌ �݀ଷ ���ሺߠሻ ൅ ට݀ସଶ െ ݀ଷଶ ��� ሺߠሻଶ 
(eq.-3)

 
During design communication, designer needs information about product and sub-assemblies in order 
to establish and make transaction on the ASN. This type of information is provided in the Data 
Dictionary. In the following subsection, the structure of data dictionary is discussed. 
 
Data Dictionary 
A data dictionary, or also called metadata repository, is a centralized repository of information about 
data such as meaning, relationships to other data, origin, usage, and format (IBM Dictionary of 
Computing, 2008).  Data dictionary is an integral part of the product database. It holds information 
about the database and the type of data that it stores, i.e., the metadata. It provides a collection of 
descriptions of the data objects or items in a data model for the benefit of designers and engineers who 
need to refer to them. 

In the proposed architecture, data dictionary is not hidden from users that differ from most 
database management systems. However, the use and retrieval of data requires authorization in order 
to prevent them from improper use that might accidentally destroy the contents. The integrated data 
dictionary is called active since it controls access to the database and automatically updates as changes 
occur in the database. 

For illustration, a data dictionary that adopts the electronic parts catalogue (ETK) of the BMW 
Group is presented. It provides interfaces for users to interact and access data related to vehicles model 
and object relationships of parts and sub-assemblies. It consists of record types (i.e., images and 
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tables) created in the database by systems generated command files, tailored for each supported back-
end product database management system. The ‘back-end’ refers to the database that resides in the 
intelligent knowledge server. Typically, entry of a data dictionary are: name of table, name of fields in 
each table, data type of each field (e.g., text, date, integer, image, etc.), length of each field, default 
value of each field, type of field (i.e., ‘nullable’ or ‘not nullable’), and constraints applied to each 
field. 

Using a descriptive name or Product-ID, an object in real world (e.g., gearshift, brake, wheel, 
etc.), its relationship with other objects, and the type of data (e.g., text, binary value, image, etc.) can 
be identified. Figure 12 shows data structure of vehicles parts in the data dictionary, in which the 
design of a crankshaft connecting rod can be accessed. The data dictionary opens a window started 
from layer 1 (i.e., ‘Vehicle Parts’) that provide information on engine object amongst a set of 
collection of vehicle parts. Afterwards, it continues respectively to open windows in layer 2 which 
provide information on the connecting rod amongst related sub-assemblies of an engine, layer 3 
information on the engineering design and, finally, layer 4 information on the specification of 
connecting rod. 

When a new design is introduced in the system and previously does not exist in the database, 
this will invoke the learning agent to study about the new entity through feature recognition. The 
recognition algorithm works by recognizing a new entity from its geometric shape based on 
specification in the feature taxonomy. In the following subsection, the structure of feature taxonomy is 
described.  
 
Feature Taxonomy 
Generally speaking, feature means the generic shapes or characteristics of a product with which 
designers and engineers can associate certain attributes and knowledge useful for reasoning about 
given product. Many of the feature definitions are abstract in the sense they do not designate classes 
intended to be instantiated. Instead, they are present to give a clear structure to the feature taxonomy 
and to take benefit of inheritance. Therefore, it is important to outlining the higher-levels of feature 
taxonomy. 

Referring to Shah  & Mantyla (1995), feature taxonomy can be defined as a hierarchical 
classification of features used in design and manufacturing that gives a natural structure for developing 
the feature library, as well as to simplify and encourage the extension of the library. In this context, the 
taxonomy is oriented to feature-based manufacturing. The outline of the feature taxonomy is depicted 
in Figure 13. It is initiated by the root class feature that has direct subclasses basic-feature, 
transition, billet, container-feature, and surface. These abstract classes form the 
roots of subtaxonomies of features for the following purposes: 
basic-feature This class consists of regular features appearing as detail features in the 

feature models, i.e., texture, hole, rotational-feature, and prismatic-feature. 
transition This class consists of regular features corresponding with various types of 

roundings and blends between two regular features. 
billet This class is the root of features representing various kinds of “base 

objects” that form the basis of feature-based designs and also act as initial 
workpieces for machining applications. Typical billets include block, 
L-block, and more complex solids such as special castings. 

container-feature This class is the root of all feature types that are made of other simpler 
features, such as compounds, patterns, and also whole parts and 
assemblies. 

surface This includes surface types. Surfaces are used to denote areas of features 
for recording feature containment relationship. Surfaces are also useful to 
model certain manufacturing processes applied to a planar or cylindrical 
area. 
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Figure 12.  Structure of data dictionary (Adapted from ETK - BMW Group, 2010). 
 

 

 

Level 3:   
DESIGN 
–  Connecting Rod 

Level 4:  
SPECIFICATION 
–  Connecting Rod 

Level 1:  
VEHICLE PARTS 
–  Engine object 

Level 2:   
SUB-ASSEMBLIES 
–  Crankshaft Connecting Rod 
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The definition of abstract feature classes can be described as follow: 
(defframe feature 
  (instance-slots (position (0 0 0)) (orientation (0 0 0))) 
) 
(defframe basic-feature 
  (is-a feature) 
  (sign NEGATIVE) 
  (parent-surface-def (constraints (axis_normal_c))) 
) 
(defframe transition 
  (is-a feature) 
  (instance-slots the-surfaces) 
) 
(defframe billet 
  (is-a feature) 
  (sign POSTIVE) 
) 
(defframe container-feature 
  (is-a feature) 
) 
(defframe surface 
  (is-a feature) 
  (instance-slots working-allowance) 
) 

 
The definition of the above subclasses defines the instance-slots position and orientation in 
the class feature. This means, all features subclasses will also contain instance-slots position 
and orientation. These definitions give the x, y, and z translations and rotation angles about x-, y-, 
and z-axes of the feature with respect to the part coordinate system. The class slot sign of the frame 
basic-feature states that by default, all basic features are considered ‘negative’ in that they 
denote removal of material from a basic part. In contrary, all billets are marked ‘positive’. The slot 
parent-surface-def states that by default, basic features are oriented along the ‘normal 
direction’ of the surface they are contained in. Finally, it is defined that all surfaces will contain a 
‘working allowance’. 
 

Figure 13.  Feature taxonomy (Source: Shah  & Mantyla, 1995). 
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The features classes and subclasses in the feature taxonomy are implemented in conjunction 
with the feature library in the product database management system for feature creation and feature 
recognition purposes. A feature library contains generic definitions of feature classes. This might 
include a list of faces, which is needed to create or recognize a feature and the relationship between 
them. Table 1 depicts a generic feature library. Each feature is defined by its generic shape as 
described by the parameterized sketch. The parameters are organized into three groups: independent 
dimension, derived dimensions, and parameters needed in positioning the feature with respect to other 
features.  

In feature recognition, the geometric model is compared to pre-defined generic features in the 
feature library in order to identify instances that match the pre-defined ones. Specific tasks in feature 
recognition might include the identification of feature geometry (i.e., edge/face growing, closure, etc.), 
extraction of recognized features from the geometric model (i.e., removing the portion of model 
associated with the recognized feature), and combination of simple features to get higher-level 
features.  

The above subsections have described the components and structure of the multiagent-based 
product data communication system. Therefore, in the following section we would like to discuss the 
communication mechanism of the system. 
 

Tabel 1.  Generic feature library (Source: Shah & Mantyla, 1995).  
 

Feature and Sketch Independent 
Dimensions 

Derived 
Dimensions Positioning 

 
Block 

 

Length,  
width,  
height 

None World 
coordinates or  
on the face of 
another block 

 
Wedge 

 

Length,  
width,  
height 1, 
height 2 

None                  
(optional;           
length and 
width derived 
from parent 
block) 

World 
coordinates or  
on the face of 
another block 

 
Thru-
Hole 

 

Diameter Depth                 
(distance            
between             
entry and            
exit faces) 

On entry face; 
specify x, y 
distance from 
reference edges 
on entry face 

 
Blind 
Hole 

 

Diameter, 
depth,             
radius 

None Same as                
thru-hole 
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Feature and Sketch Independent 
Dimensions 

Derived 
Dimensions Positioning 

 
Double 
C-bore 
Hole 

 

Dia,                    
dia.l, 
dia.2,               
len.1,              
len.2 

Length 
(optional;   
fixed ratios        
for dia.1/dia 
and dia.2/dia) 

Same as                
thru-hole 

 
Base 

 

Height,           
width,      
length,                
T 

 Positioned            
in WCS 

 
Blind 
Slot 

 

Depth,    
width,             
length 

Radius               
= width/2 

On planar face; 
along an edge, 
specify              
distance from 
the reference 
vertex 

 
Taper 
Pocket 
(Thru) 

 

 

Length,  
width,                
R,  
taper_angle 

Depoth 
(determined; 
by distance 
between entry 
and exit faces) 

On entry face; 
specify x, y 
position of 
centerpoint /  
axes wrt edges      
(optional; 
specify 
orientation) 

 
Boss 

 

Dia.,               
height 

 On entry face; 
specify x, y 
position of 
centerpoint           
wrt edges             

 
Recess 

 

Depth,             
width 

in_dia                 
(= hole_dia) 
out_dia               
(= in_dia + 
2*depth) 

Distance               
from entry            
face of hole 
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Feature and Sketch Independent 
Dimensions 

Derived 
Dimensions Positioning 

 
Rib Height,  

length,             
width 

Radius               
(= 0.5 width) 

On support face 
and start face as 
shown specify 
distance from 
reference edge 

 
MECHANISM FOR COMMUNICATION 
In collaborative design environment, a complex Web of interaction and communication is to occur. 
This circumstance has significant implication in the design of interaction for the multiagent-based 
communication system.  
 
Synchronous Bidirectional Communication 
In the aforementioned product data communication system, the interaction is designed as bidirectional 
communication that supports information flow from sender to receiver, and vice versa. Typically, this 
provokes a ‘request-answer’ scheme as the pattern for the data exchange. The request consists of the 
name of a requested service operation together with the needed parameters. The answer contains the 
result the receiver has obtained by executing the requested service operation using the submitted 
parameters.  

In this design, the data exchange is synchronous. The process blocks a sender until the 
receiver has effectively received the message. In analogy, the receiver is blocked until the message is 
stored into the receiver’s buffer.  

Any communication between a sender and a receiver is subject to losses of request messages, 
losses of answer messages as well as crashes of the sending or receiving sites. In order to detect and 
handle the unexpected events, the product data communication system uses an ‘exactly-once’ call 
semantics, i.e., the requested service operation is processed exactly once. If repeatedly sent requests 
exist by a sender, at the receiving site the receiver keeps a list of current requests. Each request in the 
list is tagged with a unique identifier. Requests are not deleted from the list until the sender has 
acknowledged the correct reception of the result submitted by the receiver. Repeatedly sent requests 
from a sender for the same service operation are answered with the result of the first successful service 
operation. In any case, the receiving site does not process the same request twice. Figure 14 illustrates 
a communication process between a sender and a receiver, where the reception of the third request 
results in answering with the result obtained from processing the second request. 

However, a failure of the receiver might occur that leads to an infinite blocking of the sender. 
Sender and receiver might end up in a cyclical blocking state and have to deal with the problem of 
deadlocks. To remedy this drawback, some sort of decoupling of sender and receiver must be 
performed. This decoupling can be achieved by using lightweight processes, or also called ‘threads’ 
(Borghoff & Schlichter, 2000).  

Assuming a sender has invoked an operation send (message M) to receiver R, then the 
receiver invokes an operation of the form receive (message M, sender S, buffer B). When using 
remote-invocation send, a sender suspends execution until the receiver has received and processed a 
submitted request that was delivered as part of the message. In the receiver site, the reception of a 
message is performed in a conditional case. In the conditional reception, the resumption of execution 
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by the receiver is dependent upon the existence of an arriving message. A precise description of this 
situation is described n the following algorithm, 

Code fragment (Operation receive) 
function receive(message M, sender S, buffer B): errorcode; 
 if (� message M of sender S) then 
  copy message M into buffer B; 
  return true 
 else return false; 

If the expected message of a sender has arrived, the function receive returns true, otherwise 
false.  
 

Figure 14.  A request-answer scheme under an exactly-once semantics 
                                           (Source: Borghoff & Schlichter, 2000). 
 

 
 

The sender and receiver must have a similar understanding on the agent communication 
language being used. In the multiagent systems environment, an agent must represent its knowledge in 
the vocabulary of a specified ontology. All agents that share the same ontology for knowledge 
representation have a common understanding of the “words” in the agent communication language.  
In this regard, the agents need a shared ontology to be able to communicate meaningful. Thus, an 
ontology should be created and be accessible to the agents who are communicating.  
 
Ontology 
An ontology is a representation of knowledge of some part of the world. Ontologies provide a natural, 
declarative way of identifying concepts and terms that can serve as the basis for communications. 
Generally, an ontology is defined as a specification of the objects, concepts, and relationships in the 
area of interest. 

Product ontology classifies the design objects into parts, features, requirements, and 
constraints. Axiom is used to describe the constraints and relationships amongst the objects. 
In this context, the design activity is a process of constructing the objects and axioms in the 
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ontology as well as evaluating the satisfaction of requirements and constraints by the product 
structure and parameter values. 

In the product ontology, each object is associated with a unique name that can be thought of as 
its ID. There are two types of objects, i.e., class objects and instance objects. A class is used for 
representing a generalized type or category of object, and instance for a specific member of a class. An 
instance and a class are related by the predicate instanceOf(.,.). Afterwards, each of these 
classes can be further divided into subclasses. The subclass relationships are denoted by the predicate 
subclassOf(.,.). 

Given an example of Torus-Primitive. The term Torus represents a concept and the 
term On represents a relationship. Concepts can be represented in the first-order logic as unary 
predicates. While, the higher-arity predicates represent relationships. The idea of a torus is a primitive 
object can be described in the following first-order logic expression: 

�x(Torus x)w(PrimitiveObject x) 

There are other more general representations. Instead of (Torus T), the expression 
(instanceOf T Torus) can be used. Both T and Torus are now objects in the universe of 
discourse, and relationship instanceOf and subclassOf can be introduced: 

(class Torus) 
(class PrimitiveObject) 
(subclassOf Torus PrimitiveObject) 
½x,y,z (instanceOf xy) ¼ (subclassOf yz) w (instanceOf xz) 

The last statement is a rule that expresses the notion of a type hierarchy. Looking at the 
product hierarchy, if two agents agree on the upper nodes of a taxonomy, they can jointly traverse the 
taxonomy until they find the location of a newly introduces concept. Thus, they can build a shared 
understanding of their content language.  
 

In the product hierarchy, a ‘part’ is a component of the artifact being designed. The artifact 
itself is also viewed as a part. The structure of a part is defined in terms of the hierarchy of its 
component parts. The relationship between a part and its components is captured by the predicate 
component_of, which can be defined by the following axioms (Lin, Fox, & Bilgic, 1996): 

Axiom 1 :  Between two parts p and p', relationship of p is a component (subpart) of p'can be 
expressed in: 
component_of(p, p')  

Axiom 2 :  The relation component_of is transitive, i.e., if a part is a component of another part 
that is a component of a third part, then, the first part is a component of the third part: 
(�p1,p2,p3) component_of(p1,p2) ¼ component_of(p2,p3)  

          ¬ component_of(p1,p3). 
Axiom 3 : The relation component_of is non-reflexive and anti-symmetric. This means a part 

cannot be a component of itself, and it is never the case that a part is a component of 
another part which in turn is a component of the first part: 
(�p)» component_of(p,p), 
(�p1,p2) component_of (p1,p2)¬» component_of(p2,p1). 

Axiom 4 : A part can be a subcomponent of another part. However, each part has a unique ID (i.e., 
its name), then, it cannot be a subcomponent of two or more distinct parts which are not 
components of each other: 
(�p1,p2,p3) component_of(p1,p2) ¼ component_of(p1,p3) 

 ¬ p2 = p3 ½ component_of(p2,p3)½ component_of(p3,p2). 
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Parts can be made from the same model and be identical copies, and can be used as different 
assemblies. 

Axiom 5 :  Part1 and Part 2 are identical copies of Part that treated as different instances of 
the same class and associated with different ID: 

 instanceOf(Part1, Part), 
 instanceOf(Part2, Part). 
 

Parts are classified into two types, depending upon the component_of relationship it has 
with the other parts in the hierarchy. The two types are primitive and composite. 

Axiom 6 :  A primitive part is a part that cannot be further subdivided into components. This type of 
parts exist at the lowest level of the artifact decomposition hierarchy. Therefore, a 
primitive part cannot have subcomponents: 
(�p) primitive(p) �» (�p’) component_of(p',p). 

Axiom 7 :  A composite part is a composition of one or more other parts. A composite part cannot be 
a leaf node in the part hierarchy; thus any part that is composite is not primitive. 
(�p) composite(p) �» primitive(p). 

Axiom 8 :  Most composite parts are assemblies that are composed of at least two or more parts: 
(�p) assembly(p) � (�p1,p2) component_of(p1,p)  
 ¼ component_of(p2,p) ¼ p1 � p2. 
 

Sometimes a designer may need to find out the direct components of a part. A part is a direct 
component of another part if there is no middle part between the two in the product hierarchy. 

Axiom 9 :  p1 is a direct component of p2 if p1 is a component of p2 and there is no p' such that 
p1 is a component of p' and p' is a component of p2: 
(�p1,p2) direct_component_of(p1,p2) � component_of(p1,p2)    
 ¼» (�p') component_of(p1,p') ¼ component_of(p',p2). 

 
The component_of relation relates objects at lower-level in the component tree to the 

objects at higher-level. By the relation, it is possible to traverse upward in the component tree. 
However, there is also a need to traverse downward in the component tree.  

Axiom 10 :  A relation of object that traverse downward in the component tree is defined as 
component, which is the inverse relation of component_of: 
(�p1,p2) has_component(p1,p2) � component_of(p2,p1). 

 
A part might have different kind of features, e.g., geometrical features, functional features, 

assembly features, mating features, physical features, etc. Here, features refer to the geometrical 
features such as hole, slot, channel, groove, boss, pad, etc.. They are also called form features. 

Axiom 11 :  A part and its features are related by the predicate feature_of: 
feature_of(f,p). 

Axiom 12 :  There can be a composite feature of f’ which are composed of several sub-features, f1, 
f2, ..., fi: 
subfeature_of(f1,f). 

Axiom 13:  A subfeature f1 of a feature f2 of a part p is also a feature of the part: 
(�f1,f2,p) subfeature_of(f1,f2) ¼ feature_of(f2,p)  

 ¬ feature_of(f1,p). 

Axiom 14:  The feature_of and subfeature_of have inverse relations has_feature and 
has_subfeature: 
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(�f1,f2) has_feature(f1,f2) � feature_of(f2,f1), 
(�f1,f2) has_subfeature(f1,f2) � subfeature_of(f2,f1). 

 
Design is an evolutionary process, in which changes might occur frequently during the 

process. Before reaching its maturity, each object of parts, features, and constraints might undergo 
many transformations and revisions. Therefore, versions of design need to be created as objects to 
record the history of designs.  

By understanding the architecture and communication mechanism of the multiagent-based 
product data communication system, in the following subsection we provide an illustration on the 
capability of the multiagent-based communication system to perform tracking of design changes. 
 
TRACKING OF DESIGN CHANGES 
In collaborative design environment, designers deal with many possibilities and complexities of design 
changes.  During design transactions, they must assess the impacts of a design change on the other 
design objects and notify other parties promptly. In most design environment, due to the lack of 
tracking of design changes, designers have to manually perform a consistency check for a proposed 
design change as well as to identify all the impacts of the change. This condition makes design 
consistency and accuracy are not guaranteed and the productivity of design team is compromised 
(Wang, Shen, Xie, Neelamkavil, & Pardasani, 2000). 

In order to solve this drawback, an approach to the tracking of design changes in a unified 
framework (Xie, 2001) is introduced. This approach enables a team of designers work on a Web-based 
collaborative design in distributed remote locations to visualize, manipulate and evaluate the impacts 
of changes to a design. 
 
Product Data Driven Approach  
From the perspectives of product variation and product improvement, design changes are imperative in 
order to meet the requirements of product specification, safety standards, or to reduce manufacturing 
or maintenance costs. Due to the associated relationships between elements in a product, a design 
change might have an impact on certain geometric constraints that might propagate to other elements 
of the product. In this approach, the mechanism for tracking of design changes is based on product 
data and the relationships generated during various stages of a product design process.  

The product data contains product descriptions for product specification, function 
decomposition structure, solution principles, layout design, assemblies, and parts. The relationships 
are established between two or more elements having geometric constraint relationships to one 
another. Here, the geometric constraint relationship defines three types of constraint between parts, 
i.e., fit, contact, and consistent constraints. The fit constraint exists if there is a tolerance requirement 
between parts. The contact constraint represents a physical contact between two parts. The consistent 
constraint exists if two parts hold a dimensional constraint without a physical contact. 

The product data driven approach enables designers to identify the total impacts of a proposed 
design change on an entire product. It provides a fundamental mechanism to support forward tracking 
and backward tracking of a design change. Forward tracking identifies the impact of the change on 
later design stages if a design change occurs at an earlier stage. On the other hand, backward tracking 
identifies the impacts of changes on previous stages, if a change occurs at a later stage. These 
operations can be implemented with database support. 

To make the necessary design information available, product data information is extracted 
from various stages of design process and represented in a data model. A data model is a set of 
concepts that can be used to describe the structure of a database (Elmasri and Navather, 1989). In this 
process, an entity-relationship (E-R) model is used to describe product data with such concepts as 
entities, attributes, and relationships.  
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The entities and attributes describe an abstract object with its properties. The change tracking 
model includes  five types of  entities, i.e., Specification, Function, Principle, Design_Object, 
Assembly, and Part. These entities are associated to 19 attributes, i.e., ID, Description, Criteria, Low-
limit, High-limit, Unit, Category, Source-form, Selected, Quantity, Buy-or-make, Measurement, 
Tolerance, Classification, Materials, Mass, Cost, Dimension, and Type. 

The relationships represent a set of associations amongst entities. They limit the possible 
combinations of entity instances. Cardinality ratio constraints specify three common combinations for 
binary relationship types, i.e., one-to-one (1:1), one-to-many (1:M), and  many-to-many (M:N). The 
change tracking model includes seven types of relationship, i.e., Requires, Contains, Previous, 
Solution, Implement, Belongs, and Constraint. Figure 15 describes the relationships between entities 
and their associated attributes. In order to provide better understanding on the change tracking model, 
the following subsection illustrates the forward tracking process of design changes on a motor-body. 

 
Figure 15.  E-R diagram for change tracking model (Source: Xie, 2001). 

 

 
Case Study 
 
The initial design of the motor-body is cylinder shape made from alloy steel (SS) with mass 1.751 kg 
and volume 0.000227 m3. The motor-body is designed must be at a fixed position inside the vehicle 
engine compartment. During operation, the force produced by the electrical motor inside the motor-
body is uniformly distributed from center to boundary. Therefore, three fixtures are applied at the 
bottom, and left- and right sides to clamp the motor-body at the fixed position.  
 
The real structure of motor-body sustains a distributed state of stress. The stress is represented by 
forces at the element joints or nodes. Correspondingly, the displacement of these points is employed in 
the characterization of displaced state of the element. 

 
To describe nodes of finite element in a continuum structure, they are assumed in the triangular 

elements that vary quadratically over the surface of the elements. When the elements are joined, there 
will be a general lack of continuity of the edge displacement of the elements along the juncture line as 
described in Figure 16. The joining of the elements at the vertices enforces the continuity of 
displacements only at those points. The three points of a triangular element define uniquely the shape 
of displacement. Since only the two end points of the element interface have influence in defining the 
shape of displacement along an edge, then, the displacements of the edges of the respective elements 
will differ for each case. As more elements are used, the disparity of the displacement of the adjacent 
element edges is reduced and the error in the solution due to this condition is reduced as well. 

Specification
- ID
- Description
- Criteria
- Low-link
- High-link
- Unit
- Category

Requires

Function
- ID
- Description

Principle
- ID
- Description
- Classification
- Source form

Design Object
- ID
- Description
- Quantity
- Buy-or-Make

Assembly
- Measurement
- Tolerance

Part
- Classification
- Material 
- Mass
- Cost
- Measurement
- Dimension
- Unit

PreviousContains

Belongs

ImplementSolution:

- Selected

Constraint:

- Type

1 m 1 1

1 1

1

m n m m

m

m

n



Page 26 of 33 
 

 
Figure 16.  Displacement of elements: (a) deflected shapes of individual elements,  

                            (b) disparity of displacements along juncture line connected elements, and  
                            (c) reduction of displacement gap by refinement of gridwork  
                            (Source: Gallagher, 1975). 

 

  
(a) (b) (c) 

 
Most structural analysis problem can be treated as linear static problem under assumptions 

small deformation (i.e., loading pattern is not changing due to the deformed shape), elastic material 
(i.e., no plasticity), and static load (i.e., the load is applied to the structure in a slow of steady 
operation). To estimate the possible occurrence of shape deformation, the force-displacement analysis 
is applied. The relationship between the joint forces and the joint displacements of finite elements 
should satisfy the following stiffness function, 

{F} = [k] {'} (eq.-4)

where {F}: element force, {'}: displacement vectors, and [k]: element stiffness matrix. An individual 
term of the [k] matrix, kij, is an element stiffness coefficient. If the displacement 'j is imposed at unit 
value and all other degree of freedom (d.o.f.) are held fixed against displacement ('k = 0, k � j), then 
the force Fi is equal in value to kij. 

During the design optimization, the displacement analysis is performed using the mixed force-
displacement equation that defines a relationship between vectors containing both force and 
displacement. If the forces and corresponding d.o.f. of an element are divided into two groups, 
designated by subscripts s and f, the general form of a mixed representation can be defined as, 

 
(eq.-5)

The force-displacement analysis produces an average deformation scale at 1.7250e+8 and a 
prediction of location where the deformed mesh are most possible to occur. The resultants 
displacement shows the minimum condition 0 mm is at location (3.969 cm, -0.499 cm, -11.000 cm) 
and the maximum condition 6.76612e-8 mm at location (-3.373 cm, -3.291 cm, -0.099 cm). The 
analysis predicts that two most possible deformed locations likely to occur at the lower-part of cab-
screw holes. This condition makes the cylinder shape has more possibility to slip from its position and 
fixtures.  

Applying the stress analysis, a convenient mode of selection of stress fields that satisfy the 
equilibrium differential equations can be determined by using the stress functions. Stress functions are 
parameters which, when differentiated in accordance with certain rules, give stress components that 
automatically satisfy the differential equations of equilibrium. 

Stresses can be evaluated at any point, both inside the element and at the nodes. For small strain 
and small rotations, 
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or, in matrix form 

൝
௫ߝ
௬ߝ
௫௬ߛ
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Ͳ ߲Ȁ߲ݕ

߲Ȁ߲ݕ ߲Ȁ߲ݔ
൩ ቄݒݑቅǤ 

(eq.-7)

where ݑ and ݒ are nodal displacements. Based on this relationship, if the displacements functions are 
represented by polynomial, thus, the stresses are one-order lower than the displacements.  

In this analysis, the von Mises stress function is applied (Liua et al., 2005) 

௘ߪ ൌ
ͳ
ξʹ

ඥሺߪଵ െ ଶሻଶߪ ൅ ሺߪଶ െ ଷሻଶߪ ൅ ሺߪଷ െ ଵሻଶ (eq.-8)ߪ

where ߪଵ, ߪଶ, and ߪଷ are three principle stresses at the considered point in a structure. For a ductile 
material, the von Mises stress (ߪ௘) and the yield stress of the material (ߪ௬) must satisfy the following 
constraint 

௘ߪ ൑ ௒Ǥ (eq.-9)ߪ

For 2-dimensional problem, the two principle stresses in the plane are determined by 
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(eq.-10)

Thus, the von Mises stress can be expressed in terms of the stress components in the ݕݔ coordinate 
system as 

௘ߪ ൌ ට൫ߪ௫ ൅ ௬൯ߪ
ଶ െ ͵൫ߪ௫ߪ௬ െ ߬௫௬ଶ ൯Ǥ (eq.-11)

The result of stress analysis estimates minimum stress 3.04976e-6 N/mm2 (MPa) at location 
(4.170 cm, -0.470 cm, -6.750 cm) and maximum stress 0.000572322 N/mm2 (MPa) at location (3.524 
cm, -3.385 cm, -0.350 cm). The stress is distributed from the inner cylindrical mesh boundary to the 
outer boundary with the highest strained locations are found at the elements adjacent to the four cab-
screw holes. This condition makes the initial design has high potential failure (i.e., crack) during the 
assembly and product use. Therefore, the initial design needs to be improved. 

Based on prior design history, designers decide to change the design of motor-body from 
cylinder to block shape. The change of Design_Object from cylinder to block shape has driven direct 
changing of assembly, part, and constraint respectively. In this case, tracking of design changes is 
performed based on entities, attributes, and relationships, which have been determined in the E-R 
diagram. Changing of geometry has an impact to constraints of four cab-screw holes which, in its turn, 
propagate to the changing of dimensions and positions of those holes on the modified shape. The 
progress for forward tracking of change of Design_Object is described in Table 2. 

As a result, the collaborative design produces an optimal design of motor-body in block shape 
with dimension 82.5 x 82.5 x 100 millimeters using material alloy steel (SS) with mass 1.859 kg and 
volume 0.000241 m3. The force-displacement analysis of the new design generates an average 
deformation scale 8.59488e+7, i.e., 50.18% better than the initial design. On the block shape, the 
deformation has been localized at the upper-front to upper-middle of finite mesh. The resultants 
displacement shows the minimum condition 0 mm is at location (41.25 mm, 23.25 mm, 0 mm) and the 
maximum condition 1.28963e-+7 mm at location 0.09 mm, 44.50 mm, -108.64 mm). Figure 17 and 
Figure 18 describe the design of motor body in comparison before and after the design optimization, 
as well as the results of force-displacement and von Mises stress analysis.  
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Table 2.  Forward tracking for change of Design_Object. 

 

ENTITIES ATTRIBUTES STATUS 
DESIGN VALUES 

INITIAL OPTIMAL 

Function 
ID No change part#1 part#1 
Description No change Motor-body Motor-body 

Principle 
Classification No change Motor protection Motor protection 
Source Form No change In-house production house In-house production  

Design_Object 
Quantity No change 100 pieces 100 pieces 
Buy-or-Make No change make make 

Specification 

Criteria No change mechanic – static mechanic – static 
Low-limit Change 3.04976e-006 N/mm2 3.43238e-007 N/mm2 
High-limit Change 0.000572322 N/mm2 0.00139487 N/mm2 
Unit No change 1 1 
Category No change automotive part automotive part 

Part 

Material No change alloy steel (SS) alloy steel (SS) 
Mass No change min 1.750 – max 1.860 kg min 1.750 – max 1.860 kg 
Cost No change USD 367.82 - USD 375.00 USD 367.82 - USD 375.00 
Measurement No change millimeter (mm) millimeter (mm) 

Dimension Change d: 82.5mm, l: 110 mm w: 82.5 mm, h: 82.5 mm, l: 110 mm 

 
 

Figure 17.  Initial design: (a) cylinder motor-body, (b) 3D cross-section of deformed mesh, 
                         (c) estimated deformed mesh, (d) estimated strained mesh. 
 

(a) (b) (c) (d) 
 
 

Figure 18.  Optimal design: (a) block motor-body, (b) 3D cross-section of deformed mesh, 
                         (c) estimated deformed mesh, (d) estimated strained mesh. 
 

(a) (b) (c) (d) 
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CONCLUSION 

Today, product development is inevitable must be performed as an integrated process with 
design to manufacturing. In a collaborative design environment, design activity might take place at 
distributed geographic locations that involves multidisciplinary design team work with various 
CAD/CAM application systems. This circumstance has driven a need for better communication and 
coordination amongst design team during the design process. As the information and communication 
technologies advance, the application of collaborative engineering to product design, so-called 
computer supported collaborative design (CSCD), becomes more promising.  

In collaborative design environment, Web technology makes remote communication 
physically viable through a common network. Furthermore, an integrated Web- and agent-based 
CSCD is able to support cooperation amongst designers and engineers, enhancing interoperability 
between authoring tools, and allow better communication of modular design tasks. In current practice, 
designers and engineers intend to perform real-time collaborative works, where multiple users are able 
to share files and work on the same document simultaneously. With the support of Cloud technology, 
designers can use virtualization and the modern Web to dynamically provide resources of various 
kinds as services for collaborative design, which are provisioned electronically. 

In this chapter, architecture of multiagent-based product data communication system has been 
introduced. The multiagent system runs on an intelligent knowledge server, which embodies two 
capabilities of intelligent agent and learning agents. It is developed as an adaptive system, which 
represents the ability of agents to adapt with changes in its environment in order to improve the 
system’s future performance. 

The system architecture uses a centralized database that can be shared during the collaborative 
design transactions. The product database is designed on an active semantic network (ASN) that can 
handle and manage the increasing amount of knowledge during the design process. The product 
database is coupled with data dictionary and feature taxonomy. Data dictionary provides a collection 
of descriptions of the data objects or items in a data model for users who need to refer to them during 
the design transaction. When a new design is introduced and previously does not exist in the database, 
the learning agent will be invoked to perform feature recognition. Here, the recognition algorithm 
works by recognizing a new entity from its geometric shape based on specification in the feature 
taxonomy. 

The data communication network is based on the seven-layer ISO/OSI network model. During 
communication, the interaction is designed as bidirectional communication that supports information 
flow from sender to receiver, and vice versa. Since an agent must represent its knowledge in the 
vocabulary of a specified ontology, hence, product ontology is created that must be accessible to the 
agents who are communicating. Thus, all agents that share the same ontology for knowledge 
representation have a common understanding in the agent communication language. 

In practice, design changes are imperative in order to meet the requirements of product 
specification, safety standards, or to reduce product costs.  The product data communication system 
provides an ability to the tracking of design changes in a unified framework. The mechanism for 
tracking of design changes is based on product data and their relationships. The product data driven 
approach provides a fundamental mechanism to support forward tracking and backward tracking of a 
design change. This approach enables designers work on a Web-based collaborative design in 
distributed locations to visualize, manipulate and evaluate the total impacts of a proposed design 
change on an entire product. 
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DEFINITIONS OF KEY TERMS 
 
Active Semantic Network (ASN): A shared database system developed for supporting designers 
during product development and is realized as an active, object-oriented database system. ASN 
comprises a network of nodes and links, where the nodes represent objects of the real world and the 
links relations amongst these objects. 

Adaptive: The ability of the intelligent agent to adapt with changes in its environment that 
commonly sources from changes of structure, program, or data (i.e. based on its input or in response to 
information) in such a manner that the expected future performance will improve. 

Agent:  An autonomous, reactive, pro-active computer system, typically with a central locus of 
control, that is at least able to communicate with other agents via some kind of communication 
language. Another common view of an agent is that of an active object or a bounded process with the 
ability to perceive, reason, and act. Various attributes are discussed in the context of agent-based 
systems. 

Cloud Computing: By using virtualized computing and storage resources and modern Web 
technologies, cloud computing provides scalable, network-centric, abstracted information technology 
(IT) infrastructures, platforms, and applications as on-demand services. These services are billed on a 
usage basis. 

Computer Supported Collaborative Design: The process of designing a product through 
collaboration among multidisciplinary product developers associated with the entire product life cycle. 

Feature Taxonomy: A natural structure of feature-based manufacturing used to develop the feature 
library and to simplify and encourage the extension of the library. 

Data Dictionary: A centralized repository of information about such data like meaning, 
relationships to other data, origin, usage, and format. 

ISO/OSI Model: An an Open Systems Interconnection (OSI) model developed by ISO 
(International Organization for Standardization) in 1984, defines a networking framework for 
implementing protocols in seven layers. Control is passed from one layer to the next, starting at the 
application layer in one station, and proceeding to the bottom layer, over the channel to the next 
station and back up the hierarchy. 

Multiagent System:  A collection of software agents that communicates and works in conjunction 
with each other. They may cooperate or compete with others, or some combination of cooperation and 
competition, to solve a complex problem which is beyond the capability of each individual system. 

Web Technology: The platforms and technologies which are used to develop a mechanism that 
allows two of more computer devices to communicate over a network through alternatives Web sites 
and Web applications.  

 
 
 


