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ABSTRACT

Past natural hazards have produced numerous biological and physical indicators that can be used 
to predict similar instances in the future. These indicators can be sensed dynamically underwater 
or on land to generate real time alerts. This article proposes the first validated fuzzified system to 
predict tsunamis (FABETP) using an overlap-based algorithm. This proposed algorithm can predict 
seismicity based on underwater marine animal’s anomalous behavior, characterized and implemented 
as biological indicators (i.e., aquatic animal behavioral attributes). Relevant information is extracted 
from these attributes and used to design fuzzy rules that generate opinion-based alerts. More precisely, 
the proposed algorithm, Overlap-based Fuzzified rated Marine Behavior, (OBF_MB), derives alert 
rules when executed on a sea turtle behavior dataset obtained from an online repository. The deployed 
underwater sensor-collected dataset includes the following measurements: induced electromagnetic 
field, undersea turtle count, and angle of deviation (in terms of the turtles’ navigation direction 
formulated per month and per day). These values are used as the inputs to the proposed system. 
To generate an opinion, an information gain-based opinion score is used to calculate the opinion 
deviations from the generated opinions of the default rule. For future data values, 2004 is used here 
as the default opinion year and the scenarios is the default rule. This paper formulates three classes 
of opinions using the proposed algorithm: Alert, Pre-Alert and No-Alert. These opinions can be used 
in the future to generate real-time alerts based on aquatic animal behavior.

Keywords
Information Gain, Marine Behavior, Opinion, Rules, Sea Turtle Fuzzification, Tsunami Alert

INTRODUCTION

The South Asian Tsunami is the common name given by the scientific community to a massive 
underwater earthquake that occurred in 2004 along the western coasts of Sumatra and Indonesia 
(Munich RE, 2013), and was one of the deadliest events in history. Several countries: Indonesia, 
Srilanka, India and Thailand were victimized by this terrible event (Lay et al., 2005; Lovholt et al., 
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2006). This tsunami lead to the deployment of the Indian Ocean Tsunami Warning System (TWS) 
(Joseph, 2011) which was designed to predict tsunamis in real time and well in advance and generate 
warning messages for alerts or for mandatory evacuations. Despite the existence of this developed and 
operational tsunami warning system, there have been past instances when the expected alert warning 
messages were not generated (Lovholt et al., 2014). One such example stems from a recent report by 
the BBC, where the well-established Tsunami Early Warning System (TEWS) failed to generate any 
warning in response to a 7.8-scale earthquake that struck off the coast of West Sumatra on March 2, 
2016 (BBC News, 2016). While many rationales (NewsNow, 2016) were cited for this catastrophic 
failure, distinctive gaps based on on-site experiences were addressed in a recent report (Lassa, 2016) 
by a research activist that addressed the following topics:

1. 	 Failure of tsunami sirens in remote areas;
2. 	 Forcing local authorities to revisit the monitoring of sea coasts and the effectiveness and 

authenticity of the generated warning messages;
3. 	 The dependency of local communities on buoys that analyze ocean wave behavior as the critical 

and sole indicators of tsunamis.

Similarly (as mentioned above) inspections have also been cited as culprits in various other 
scenarios (VoaNews, 2011) where experts have highlighted the inefficacy of prevailing warning 
systems. It is important to note that these warning systems were developed only after devastating 
events that had occurred years before (Lay et al., 2005; Lovholt, 2006) Figure 1a (Tsunami Bulletin, 
2010) shows a still image taken after the fatal tsunami that hit Japan in 2011.

Figure 1. (a) A still image from the 2011 tsunami in Japan; (b) Whale beaching in New Zealand before the 2011 tsunami
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Clearly, such recent phenomena, which caused worldwide surprise and fear, highlight the dire need 
for efficient, alternative and complementary warning systems that would be effective in preparing for 
similar future tsunami events (UNISDR 2005). It is interesting to note that post-occurrence analysis 
of various historic tsunami events from various parts of world report on signs and signals produced 
by nature prior to such events. Anomalous and ambiguous behavioral responses towards seismicity 
have been cited in both animals and plants. These reports have been surveyed and debated by various 
researchers, scientists and risk reduction organizations (Waltham, 2005; Mott, 2005; Corea, 2008; 
Yamauchi et al., 2011).

However, the existing tsunami warning prediction systems focus solely on geophysical indicators 
such as underwater earthquake magnitude sensors, bottom pressure recorders, tide gauge analysis, 
and waveform inspection (Grasso et al., 2011; Beltrami, 2008). In these systems, the mentioned 
parameters are sensed using wireless sensor nodes placed under water, and these sensed values are 
then used for real time prediction. A significant improvement in Tsunami prediction modeling is 
required. This article proposes and validates the need for employing a new dimension (i.e., animal 
behavioral responses) to improve the model of tsunami prediction. Initiatives have been launched 
by various disaster management and risk reduction-based organizations to encourage and educate 
populations to perceive and report on the changes in animal behavior that occur before a hazardous 
crisis, which can help in creating global alerts (Red Cross 2015; Red Cross 2015).

Marine life, which comprises the aquatic animals and micro-organisms present underwater, forms 
a significant part of nature. The responses of marine life, if studied and analyzed, can improve the 
chances of predicting tsunamis with greater accuracy. Scientists and researchers believe that nature 
does produce messengers: animals and plants whose behavior can be used to propagate alarm signals 
to mankind. Among these, animals provide visible signals through their abnormal behavioral responses 
(Mott, 2005). Apart from simply raising awareness, these signals should be integrated and become 
part of the design and implementation of automated and diverse warning systems.

No current global warning system monitors and analyzes anomalous animal behavior worldwide 
to generate tsunami alerts and warnings. Therefore, the focus of this paper is to redefine and validate 
existing tsunami warning systems by adding a concomitant aquatic animal behavioral sensor 
component using an opinion-based fuzzified approach. This newly added system (on its own) will 
analyze and create alerts based on anomalous animal behavioral responses to changing environmental 
conditions that occur before a critical event.

The novel highlights of this paper are as follows:

•	 We present a comprehensive survey of the tsunami warning algorithms and systems proposed 
thus far to highlight the lack of global tsunami behavior predicated on irregular aquatic 
physiological practices;

•	 We identify and quantify aquatic anomalous behavioral attributes for pre-seismic 
activity detection;

•	 We have used the quantified attributes in response to changing environmental conditions to 
formulate conjunction-based decision rules. These fuzzy if-then constraints are derived from a 
proposed overlap-based fuzzification rating of marine behavior algorithm using a retrieved sea 
turtle activity dataset prepared for seismic prediction;

•	 We perform case-by-case rule validation by opinion mining and gained-information extraction to 
identify tsunami-alert and tsunami-no-alert years. The proposed system’s identifications coincide 
with the historical data; thus, they flag the Indian Ocean tsunami of 2004 as an alert year.

In this paper, we propose and implement an overlap-based fuzzification algorithm to infer 
prediction rules for tsunamis rated on marine animal behavior. Using these rules, mined opinions 
are characterized as No Alert or Alert opinions based on the information gain (ΔIfGain) obtained in 
comparison to a default rule. The default rule is formulated and comes out be for the scenario of year 
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2004 data values. Historically 2004 was a tsunami year, hence we mark the rules pertaining to it as a 
default rule. Information gain (ΔIfGain) produces binary polarities as positive and negative values to 
identify (or not identify) 2004 as an alert year. To evaluate these rules and obtain the data polarities, 
a dataset that collected the behavior patterns of sea turtles near Reunion Island from 2004–2012 was 
obtained from a free public source and prepared. These behaviorally attributed parameters have been 
tapped for sea turtles in response to changing geophysical conditions (here, induced electromagnetic 
fields: EMF of ocean flows) Evidence and tagging of the behavioral parameters with regard to 
changing EMF values along with the reasons why sea turtles were chosen as a specific case are cited 
in further sections.

PREMISES AND TYPES OF TSUNAMI WARNING SYSTEMS

A tsunami, as a hazard, is defined in terms of a wave system generated from short duration underwater 
disturbances (Monserrat et al., 2006). Tsunamis can be caused by earthquakes, volcanic eruptions or 
landslides (Grilli et al., 2002). Environmental hazards are categorized as “Ongoing” and “Creeping 
(Slow-Onset).” Tsunamis is classified as “ongoing” hydro-meteorological hazards that require hours 
of generation time (greater than an earthquake itself). Table 1 shows a categorization of hazards in 
terms of their generation time (UNEP Global Environmental Alert Service (GEAS) 2012). It can be 
easily inferred that pre-tsunami activities, if monitored effectively, can aid in constructing a warning 
system (UNISDR-UN 2006). In the subsequent sections, using highlights of a variety of surveyed 
tsunami warning products and base algorithms, we have categorized the existing systems into three 
broad categories.

Geophysical Warning Systems
Use of underwater and in-environment changing conditions (i.e., bottom pressure, tide gauge recorded 
changes, bathymetry, sea-level measurements or waveform height and run up records) to predict 
tsunamis has always been a highly researched area (Titov et al., 2005; Wei, 2003; Beltrami. 2008; 
Grasso et al., 2011; Beltrami, 2011; Cecioni, 2014; Mulia, 2016; Inazu, 2014; Horspool, 2014).

A tsunami has been characterized as a tidal wave produced from the displacement of large 
volumes of water. Tsunamis can be generated from earthquakes, landslides, volcanic eruptions, and 
so on. The subsequent section explores and presents the highlights of proposed and existing warning 
products and algorithms.

Society
Finding ways to identify and exemplify alert conditions or situations to communities and individuals 
based on observations or other knowledge has been the goal of a variety of people-oriented warning 
systems (UNISDR 2006). Society itself has reported various distinguishing pre-alert observations 
that typically herald the arrival of tsunami such as anomalous aquatic or terrestrial animal behavior 
and changes in coastline water conditions (Arce Ricardo San Carlos et al., 2017). These reports have 

Table 1. Sample table

Name of Hazard Type Warning Time

Earthquake Quickest Onset threat Seconds

Volcanic Eruptions Medium sudden Days to Hours

Tsunami Quick to medium onset threat Hours

Drought Slowest ongoing threat Months
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led to various methods and systems that rely on community awareness or respond to these reported 
conditions to identify major alert situations.

Nature
Nature comprises living and non-living elements, both of which have responded to abrupt changes 
in physical state of environment. Non-living element feedback was discussed in the first category 
of warning systems. Living organisms such as fishes and whales have been identified as natural 
messengers who send visible signals through abrupt behavioral responses (Tiwari et al., 2011; Haryo 
et al., 2005). Case studies have been presented, and natural signal-based systems have been discussed 
as listed in Table 2.

Geo-Physiological Hybrid Systems
This paper proposes adding a new warning system termed FABETP to the list of existing systems. The 
proposed system is a hybrid of both the natural and geophysical parameters identified individually in 
the previous sections. Figure 3 provides a template pictorial representation for the proposed multiple 
and diverse parameter-based system. Note that a new global system based on a conjunction of the 
given classes does not yet exist. Conjunction-based associations between aquatic species behavior and 
changes in earth’s geophysical conditions such as electric and magnetic fields date back to observations 
presented by Indian professor Dr Arunachalam Kumar, who reported whale beaching along the New 
Zealand and Australian coastlines in 2004 before the Indian Ocean tsunami (Stephen 2011) Similarly, 
50 melon-headed whales beached themselves 6 days before the 2011 tsunami in Japan, Figure 1b 
(Seaburn, 2015) depicts the New Zealand whale beaching. Researchers reported that these whales 
had no signs of disease and speculated that one reason for the “mass suicide” of whales all across the 
world was due to disturbances in the electromagnetic field co-ordinates and to possible realignments 
of the geotectonic plates (Rediff News, 2016). The overall structure of the existing systems is shown 
in Figure 2, and the formulas and parameter of FABETP are explained in the next sections.

Figure 2 captures the essential three dimensions of the existing warning systems. Concatenating 
them synchronously, where one change causes reactions in the other dimensions can form the basis 
of a new system. AOD=Angle of deviation; EMF = Electromagnetic Field; Count=Marine animal 
population count; Awareness=creating awareness among society.

As argued by various researchers and cited above, tsunamis are an “ongoing” type of crisis 
event whose generation time is counted in hours. Thus, it affects the animal community well before 
its physical generation. This community is composed of both aquatic and terrestrial species. The 
behavioral effects shown by such species can occur days or even months before the creation of any 
hazardous waves. In this paper, we explore, propose, and validate the system called FABETP, which, 
if it were presently tracking the geophysical influences of aquatic behavior, can produce advance 
warnings of tsunamis.

Figure 2 highlights the need for a new system in which all three dimensions of the existing warning 
systems are associated and interact with each other to produce another domain of warning system 
development. The focus of this paper is to present a novel fuzzified rule extraction algorithm to infer 
prediction rules for tsunamis based on marine animal behavior. An opinion score is formulated from 
the extracted rules and then classified into a No Alert or Alert decision based on the information gain 
(opinion score) obtained in reference to the default rule.

Synchronizing the existing facets of prevailing warning systems can create further insights to 
predict tsunamis well before their arrival. The current state of the art highlights the dependence of 
coastline inhabitants such as fisherman (the society itself) on the ability of the existing precursors 
to predict or identify threats from underwater disturbances. An automated system that extracts 
time-synchronized information from all three facets (society, nature and geophysical aspects of the 
environment) can produce warnings at a higher trust level. Past analysis (Rikitake, 1978) shows that 
moderately short-range precursors based on observations of a few geophysical features (i.e., waves, 
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Table 2. Existing and proposed tsunami warning techniques

Authors Title Publisher Year 
Published Considered Parameters Type

Titov et al.
Real time Tsunami 
forecasting: Challenges 
and Solutions

Natural hazards 
and Earth 
systems

2003 Water level data with a database of pre-
computed scenarios Geophysical

Wei et al. Inverse Algorithm for 
Tsunami Forecasts

Journal of 
waterway, Port, 
Coast and ocean 
Engineering

2005 Use of inversion algorithm technique based on 
the Green function Geophysical

Beltrami,

An ANN algorithm for 
automatic, real-time 
tsunami detection 
in deep-sea level 
measurements

Ocean 
Engineering 2008

An artificial neural network (ANN) 
implemented on Bottom Pressure Recorders 
(BPRs) and compared to the one developed 
under the Deep-ocean Assessment and 
Reporting of Tsunamis (DART) program

Geophysical

Grasso et al. Early Warning Systems: 
A state of Art

A report by 
UNEP and 
GEAS

2011
Warning system developed on factors like 
seafloor bathymetry, topography, sea level data 
and tide gauge patterns

Geophysical

Beltrami,

Algorithm for automatic 
Real-time Tsunami 
detection in Wind-wave 
Measurements: Using 
Strategies and Practical 
Aspects

Coastal 
Engineering 2011

Use of an amplitude-discriminating algorithm 
based on an infinite impulse response-time 
domain filter that characterizes the actual 
tsunami waveform in ‘quasi-real-time’

Geophysical

Cecioni, 
et al

Tsunami Early Warning 
System based on Real-
time Measurements of 
Hydro-acoustic Waves

Proceedia 
Engineering 2014

A numerical model to reproduce tsunami 
generation and propagation based on surface 
elevation measurements using the inversion 
technique

Geophysical

Mulia et al

Real-time forecasting 
of near-field tsunami 
wave-forms at coastal 
areas using a regularized 
extreme learning machine

Coastal 
Engineering 2015

Application of extreme learning machine as a 
universal function approximator, thus improving 
the standard inversion algorithm to capture non-
linearities exhibited by the tsunami

Geophysical

Inazu, et al

Near-field tsunami 
forecast system based 
on near real-time 
seismic moment tensor 
estimation in the regions 
of Indonesia, the 
Philippines, and Chile

Earth, Planets 
and Space: 
Springer Open

2016

A forecast system based on an automatic 
centroid moment tensor estimation using 
regional broadband seismic observation 
networks

Geophysical

Horspool, 
et al

A probabilistic tsunami 
hazard assessment for 
Indonesia

Natural Hazards 
and Earth 
System Sciences

2014

Forecasts of tsunami hazards sourcing for 
epistemic and aleatory uncertainty in the 
analysis through the use of logic trees and 
sampling probability density functions.

Geophysical

Chatfield 
et al

Twitter Early Tsunami 
Warning System: A Case 
Study in Indonesia’s 
Natural Disaster 
Management

46th Hawaii 
International 
Conference on 
System Sciences

2013

A Twitter-content analysis-based warning 
system based on data collected from 
e-government websites of agencies involved in 
disaster preparedness

Society

Ulutas et al

Web-based Tsunami 
Early Warning System: 
a case study of the 2010 
Kepulaunan Mentawai 
Earthquake and Tsunami

Natural Hazards 
and Earth 
System Sciences

2012

Response analysis of the information received 
from Global Disasters Alerts and Coordination 
System (GDACS) using models based on 
the long wave theory with a pre-calculated 
simulation for tsunami scenario database for 
that region

Geophysical

Dominey D 
et al

Letter to the Editor: 
The Australian Tsunami 
Warning System and 
lessons from the 2 April 
2007 Solomon Islands 
tsunami alert in Australia

Natural Hazards 
and Earth 
System Sciences

2007

A proposed system called Geo-science Australia 
(GA) which must detect, locate and evaluate 
potential tsunamis based on probable wave 
height along Australia’s coasts, deep water 
tsunami detection buoys, and tide gauges at 
various points in the SW Pacific and Indian 
Oceans

Geophysical
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electric fields, magnetic fields, water currents, etc.) can be more effectively used if supported by 
bio-system parameters in an integrated approach to predicting abnormal seismic disturbances [here 
Tsunami]. Here, the bio-system parameters include behavioral changes, breeding activities, and 
migration patterns of aquatic animals, all of which are majorly affected by impending tsunamis.

EXISTING WARNING SYSTEMS AND TECHNIQUES: THE STATE OF THE ART

Tsunami prediction has been a long-standing challenge to the research and scientific community; 
however, tsunamis are unpredictable events, and even efficient and precise techniques and systems 
have failed to provide predictions in time. The goal of this paper is to supplement the existing features 
of current Tsunami warning systems (TWS) because there more dimensions must be added to improve 
their performance. Table 2 presents a comprehensive survey of both the current and past warning 

Authors Title Publisher Year 
Published Considered Parameters Type

Allen et al
Model-based tsunami 
warnings derived from 
observed impacts

Natural Hazards 
and Earth 
System Sciences

2010

Consideration of observed coastal impacts 
for nine past events leading to retrospective 
or “ideal” warning schemes in which the 95th 
percentile values of maximum amplitude within 
designated coastal zones are examined and 
thresholds that produce the best match for the 
ideal schemes are selected.

Geophysical

Salamon, A.

Potential tsunamigenic 
sources in the eastern 
Mediterranean and a 
decision matrix for a 
tsunami early warning 
system in Israel

Ministry 
of national 
infrastructures, 
geological 
survey of Israel

2010

Proposed a decision matrix subject to landslide 
distance with the magnitude of the assumed 
epicenter and the magnitude of historical sea 
waves coming from seismogenic slumps.

Geophysical

Kamogawa, 
et al

A possible space-
based tsunami early 
warning system using 
observations of the 
tsunami ionospheric hole

Scientific 
Reports 2016

A quantitative relationship between initial 
tsunami height and the Total electron 
content depression rate caused by a Tsunami 
ionospheric hole from seven tsunamigenic 
earthquakes in Japan and Chile used to design a 
tsunami early warning system.

Geophysical

Chaturvedi 
et al,

A brief review on 
tsunami early warning 
detection using the 
BPR approach and post 
analysis by SAR satellite 
dataset

Journal of Ocean 
Engineering and 
Science

2017

A decision-based matrix has been prepared to 
provide the early warning issues based upon the 
bottom pressure rate measurements. The model 
was then followed up by the enhancing SAR 
image processing techniques with the removal 
of speckle noise using wiener filters

Geophysical

Suppasri, A. 
et al

The 2016 Fukushima 
earthquake and tsunami: 
Local tsunami behavior 
and recommendations 
for tsunami disaster risk 
reduction

International 
Journal of 
Disaster Risk 
Reduction

2017

People response towards tsunami wave 
height observations to be prioritized over 
fault mechanisms for actual categorization of 
warnings. Such prioritization can improve the 
current warning system

Society

Charnkol, T 
et al,

Tsunami evacuation 
behavior analysis: One 
step of transportation 
disaster response

IATSS research 
30.2 2006

Analyzing people response towards tsunami 
warning using logistic regression and 
identifying thrust areas of improving the 
response-effectiveness of a warning system

Society

Haryo 
Dwito 
Armono 
et al

Natural Early Warning 
System for Tsunami

International 
Seminar Disaster 
Early Warning 
System

2005

People response towards anomalous animal 
behavior carries more weightage for efficient 
warning distribution. Such prioritization can 
improve the current warning system

Nature

Grant et al

Predicting the 
unpredictable; 
evidence of pre-seismic 
anticipatory behavior in 
the common toad

Journal of 
Zoology 2010

Pre-response of toads in Ruffino lake to the 
April 6, 2009 earthquake in Italy where they 
declined in number considerably

Nature

Table 2. Continued
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techniques/methods/systems along with their key features and parameters. Every mentioned and 
surveyed technique or system from the previous section has been mapped to the category of warning 
system to which it belongs.

To explore the existing methodologies and systems proposed by various active researchers, we 
have followed a “true blue” approach that exemplifies certain assumption. This assumption is that 

Figure 3. Proposed system for tsunami warnings: FABETP

Figure 2. Current view of existing warning systems
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certain scientific journals from specific publishers serve as the “real McCoy” of computer science 
scrutiny related to hazard mitigation. Some other publications are reviewed in this survey. However, 
a surfeit of publications and articles exist in tsunami hazard mitigation; the articles selected and 
reviewed for this survey consist of the most highly cited papers or were published in the past 5–7 
years. These papers highlight the difference in the approach to societal and natural warning systems 
in specific in a gap of more than 10 years.

It can be inferred from the surveyed articles that there is a high bias toward analyzing geophysical 
features to predict tsunamis. Another example of analyzing bathymetry was reported by (Chidambaram 
et al., 2010). While we acknowledge that a tsunami is a hazard resulting from abnormal changes in 
geological and physical conditions of waves or bathymetry, tsunamis also elicit “natural warnings” 
(Gregg et al., 2007).

Considering the listed studies, numerous case studies exist that have noted abnormal reactions in 
both terrestrial and aquatic animals—before the occurrences of underwater and underground seismicity. 
The prevailing case studies focus primarily on animal responses to earthquakes (Chen et al., 2000; 
Snarr, 2005; Fujimoto, 2008; Hanamura, 2008); few articles have focused on abnormal pre-tsunami 
aquatic animal behavior. This again reflects the necessity for a global system. One validated case 
study by (Grant et al 2010) cited in our survey reports a mass suicide by underwater toads prior to 
seismic reactions along the coastline of Italy (Matt Walker 2012).

In (Charnkol & Tanaboriboon, 2006), (Chatfield & Brajawidagda, 2013) and (Suppasri et al., 
2017) the community responses of society in response to either warnings or to visible changes in 
wave heights have been analyzed either on the web or through questionnaires. Little investigation 
has focused on how people specifically react to or perceive aquatic animal behavior as adaptive or 
abnormal. In the FABETP system proposed here, societal responses to anomalous animal behavior 
are not considered because no such global system exists; thus, there is a lack of data.

THE NEED FOR A NEW HOMOGENIZED SYSTEM: WHY SEA TURTLES?

The previous sections have described why there is a need for a new and more diverse system. The 
well-known fact that tsunamis are still unpredictable has motivated the research and scientific 
community to find and demonstrate more trustworthy factors to predict tsunamis in real time. Such 
systems should be able to raise warnings days and months before tsunamis rather than a few hours or 
minutes. Aquatic animals sense various signals to maintain their orientation and navigation patterns in 
variable underwater conditions. These underwater conditions are characterized by varying parameters 
such as induced electric fields or changing electromagnetic forces across a given column of water. 
These parameters vary with respect to oceanic water movements across earth’s geomagnetic field 
(Kirschvink, 2000). Any abnormalities in these cues can affect aquatic species’ normal behavior, for 
example, by affecting their direction-finding capabilities or ability to find food, and in some cases 
can lead to mass suicides or beach stranding.

Past researchers have demonstrated that marine animals with magnetic and electric receptors 
show significant reactions to induced underwater magnetic and electric fields (Schaal, 1988) Such 
reactions can result in behavioral and physiological changes, loss of orientation, or changes in migration 
patterns over time. In our new system, our proposed OBF_MB technique exploits this facet of animal 
response by capturing such reactions in the form of fuzzified attributes and manifesting them as 
if-then-else decision propositions. Messages received by sensors are processed using these rules to 
produce tsunami warning messages. The messages tap animal responses to abnormal geophysical 
conditions that humans have also observed (Meenakshi, 2013).

Here, we use existing state-of-the-art (Schultz et al., 2010; Tricas, 2012; Dodds, 2012) reports 
that identify the effects of abnormal electro-magnetic fields on marine animals. These effects can 
act as deterministic precursors for designing a tsunami warning system. On a qualitative basis, the 
weight of the available evidence suggests that sea turtles are most likely to be affected by exposure to 
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changes in induced magnetic fields (Lohmann, 2008). Thus, the proposed system works by analyzing 
sea turtle behavioral patterns. In an experiment conducted by (Lohmann, 2008), turtles exposed to 
strong magnetic fields from the north area swam south, whereas turtles exposed to strong magnetic 
fields from the south swam north. These turtles lost navigational and prey-tracking capabilities; thus, 
they were delayed in reaching their nesting areas. Similar experiments concluded that both juvenile 
and adult sea turtles evacuated their breeding nest area and swam toward deeper offshore areas when 
exposed to strong magnetic fields, thereby decreasing the population count in the upper water column.

ANATOMY OF THE FABETP SYSTEM

In 2016, the United Nations Office for Disaster Risk Reduction proposed the Sendai framework, 
which is the first major agreement of the post-2015 development agenda for sharing and recognizing 
roles and responsibilities in implementing disaster risk reduction.

As per the report, a hazard early-warning system should include the following components:

•	 Risk information;
•	 Hazard data and forecasts;
•	 Communication and dissemination;
•	 Preparedness and early response.

Overriding this formulated framework, we instead propose a new system called Fuzzified Aquatic 
Behavior Extracted Tsunami Prediction model, or FABETP with anatomy shown in Figure 4. The 
four components of our new system are explained in the following sections.

Risk Analysis
This component analyzes tsunami-related risk prior to its onset. Changes in environmental geophysical 
conditions prior to tsunamis have been observed in the past by various scientists. These conditions 
are strongly related to oceanic flows and waves with short wavelengths generated before the onset of 
devastating tsunami hazards. Such parameter-based warning system/methodologies were cited above 

Figure 4. Anatomy of FABETP
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in our survey. In (Bleier et al., 2005) claimed that a network of passive sensors (magnetometers) 
could be used for earthquake prediction by monitoring the transient changes in earth’s magnetic field 
that occur prior to imminent earthquakes. Similar observations have been cited for tsunamis; thus, 
integration of these magnetometers can improve the current warning systems. The abnormal changes 
observed before tsunamis (Tatehata et al., 2015, Manoj, 2011) typically include induced electric and 
magnetic fields, one of the geophysical conditions we address in our system. Animals (here, turtles) 
easily sense any changes in adaptive electro-magnetic fields—well before humans. Their consequent 
reactions include changes in their nesting, breeding and migration patterns. Using the cited evidence 
(Sugioka, 2005; Tyler, 2005; Nair et al., 2010) for electromagnetic field values, a linguistic mapping 
of “low”, and “high” labels was performed to map the existing. The corresponding value mappings 
are shown in Table 4.

Sea turtle activity data was obtained from (OBIS-seamap) which has tracked loggerhead turtle 
navigation and counts for the mentioned years (Scientific Name: Caretta Caretta) as shown in Figure 
6 for Reunion Island near the Indian Ocean. The Boxing Day tsunami in 2004 (also known as the 
Andaman-Sumatra earthquake) affected 11 countries including Reunion Island (Ramalanjaona, 2011) 
(also shown in Figure 5. This information is sensed by same-species communities of turtles as shown 
by the different colors. The raw data includes the locations of different turtles in communities in the 
form of latitude and longitude. The deviation is obtained by grouping the common species IDs and 
then applying haversine equations (Rosettacode.org, 2012). As presented in (Virmani & Jain, 2016), 
sea turtles exhibit a complete reversal in direction corresponding to a deviation in opposite direction. 
An overview of the turtle activity is obtained from available plots

Monitoring and Prediction
This component monitors the inferred rules from our proposed algorithm OBF_MB using the 
overlap between activation hyper-boxes of merged yearly datasets obtained from the above 
component. Each year’s dataset is attributed with further prepared parametric values explained 

Figure 5. Islands affected by the 2004 tsunami
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in the next section. The algorithm weights the attribute based on the overlap obtained between 
the minimum and maximum values from the activation hyperbox of the tagged year. This min-
max to “LOW”, “MED” and “HIGH” classifier is constructed (Quteishat, 2008) to extract Fuzzy 
if-then-else rules to rate pre-seismic marine behavior. Mining the opinion score from every 
rule produces a polarized information-gain. Therefore, this component of the proposed system 
FABETP monitors and predicts future tsunami based on observable marine animal patterns and 
responses to changing geophysical conditions prior to any risk.

Alert Responses
This component of our system produces response messages based on the value deviations of the 
monitored attributes, producing warning alerts when sufficient deviation occurs.

Society Awareness
This is a self-explanatory component where initiatives from DRR (Disaster Risk Reduction) 
based agencies and organizations must be implemented to monitor the behavior of aquatic 
species in real time.

Figure 6. (a) Dataset plots: Turtle trajectory plotted for the complete dataset; (b) Dataset plots: Overview of the complete dataset
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DATA DESCRIPTION AND PREPARATION

The proposed OBF_MB technique works on data prepared from marine turtle behavioral statistics 
acquired from Reunion Island near the coastline of the Indian Ocean. Table 3 shows the metadata of 
the mentioned attributed dataset.

The parameters were obtained and prepared from the attributed dataset for the years 2004–2012 
described below:

1. 	 Angle of Deviation (between consecutive months) calculated between consecutive months 
obtained for each year of the complete dataset and linguistically mapped as shown in Table 4;

2. 	 Angle of Deviation (between available days) calculated between consecutive or next day available 
obtained for every year of the complete dataset;

3. 	 Marine turtle count (underwater sea turtle count);
4. 	 Electromagnetic Field: the induced EMF’s (linguistically mapped as discussed in the 

previous section) during underwater seismic perturbations. Using a common timestamp 
(wherever applicable), a behavioral turtle activity dataset with respect to changing 
Electromagnetic field is prepared. From the above process, we found that some values 
were unknown in different years and at various timestamps. These included days close to 
the December tsunami of 2004.This we assume to be a cause of unavailability or inability 
of sensors to track the information prior to hazardous event or otherwise and thus is one 
of the limitations here.

Table 3. Metadata of turtle activity dataset

Attribute Description

Tag_ID Unique ID provided by Owner of Dataset

Lat Latitude (In Decimal Degrees)

Lon Longitude (In Decimal Degrees)

Sp_code Specie code of the observed Species

Obs_Count Number of Animals Sighted

Obs_ Date_Time Date and time of Observation in UTC

Table 4. Parameter to range variable mapping from OBF_MB

Parameter (Pk) Name Rule Extracted Parameter 
Variable Range of Values Observed

k=1,2 Angle of Deviation(Month) low <= 100 degrees

Angle of Deviation(day) medium >=100 & <=140 degrees

high >=140 & <160 degrees

very high >=160 Degrees

k =3﻿
k=4

Sea Turtle count﻿
Electromagnetic Field

low﻿
medium﻿
high﻿
low﻿
high

<=3﻿
>=5 &<=7﻿
>=8﻿
<=1 nTesla﻿
>= 1 nTesla till 4 nTesla
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FABETP WORKFLOW

Figure 7 shows a flowchart of FABETP, which is designed to generate real-time Alert or No Alert 
decisions. The sensed and prepared parameters identified above form the input to the system. The 
following steps describe the stages of the proposed system.

OBF_MB Approach: Stage 1
As discussed in the previous section, the dataset is segregated in a year-wise fashion as per the 
algorithm OBF_MB (described in the previous section). The preliminaries associated with the 
proposed algorithm are as follows.

Let Ti be the tuple input data from the prepared marine turtle dataset in a given year i = 2004 
denoted as:

T
P for k

otherwisei
k=

≤ ≤






  

       

1 4

φ
	 (1)

Figure 7. FABETP workflow



International Journal of Distributed Systems and Technologies
Volume 10 • Issue 1 • January-March 2019

70

In accordance with historical statistics, December 2004 is marked as a Tsunami event. The 
proposed technique analyzes the differences in behavioral attributes between the year 2004 and other 
prepared years from the dataset. These differences reveal the abnormal marine behavior that occurred 
in 2004. As shown in lines 18–20 of Algorithm 1, the input tuple data from the source dataset include 
every parameter Pk in a given year i as defined above. The region is defined as follows:

R or R
T for k Max

otherwiseik jk
ik ik ik  
  

       
=

≤ ≤






min 1

φ
	 (2)

where Rik is the activation hyperbox that includes the minimum and maximum of parameter k in 
the year i tuple data. Using the proposed algorithm (OBF_MB), the parameter Pk (k =1, 2, 3 and 
4) values are mapped to range commonly referred as linguistic terms: ‘low’, ‘medium, ‘high’ and 
‘very high’. The number of terms obtained for every parameter depends on the diversity of values 
present. Table 3 shows the parameter to range mapping derived using OBF_MB. As mentioned in the 
previous section, angle of deviation (month and day) i. e k =1 and k = 2 respectively is obtained by 
application of haversine formula to turtle marked latitude and longitude values. Figure 8 and Figure 
9 shows box plot representing median latitude and longitude for all years. The mentioned figures 
depict the deviation in position across the considered years.

The Overlap Function: Stage 2
This function is used to build a min-max rule-based classifier to identify the parametric data points 
further used for fuzzification. The function specifically overrides the classic fuzzy classifier region 
overlap function; here, it extracts a feature representing the intersecting values in every year data 
values as an input to the proposed algorithm.

Considering the year windows as generated under lines 1–4 of the algorithm, activation hyperbox 
regions are created based on [min, max] flags for every parameter k in the given years i and j. To 
obtain the overlap states, the following cases were identified for fuzzy rule extraction used in seismic 
prediction. The reason for categorizing these windowed values for the i to j years is to study their 
overlap or differences with the known historical values for the days or months prior or 2004 tsunami:

Case 1: For given years i and j such that |i-j| > 3.
Case 2: For given years i and j such that |i-j| < 3 and > 1.
Case 3: For given years i and j such that |i-j| = 0 (i.e., within the year 2004 data range).

Equation 3 shows the overlap function used by OBF_MB:

Ovl
min Max min Max

minimum of min Max min Maij

i i j j

i i j

=
∩( , , )

( , ),( ,  xx
j
)

	 (3)

Predictive Fuzzy Rule Extraction: Stage 3
From the divided cases presented in the previous sections, the dataset for every case-based scenario 
is explored. From Equation 3, the following rule set is obtained.

Case 1
Because the gap between years is high, the input values do not overlap for all the considered parameters. 
Figure 10 shows the overlap scores obtained for all four parameters. As the majority values coincide 
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Algorithm 1. OBF_MB: Overlap based fuzzification for rated marine behaviours
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with 0 hence Equation 4 gives overlap value for this case. The calculated observations coincide with 
the assumption that no overlap occurs in any attribute value between no-alert and tsunami-alert years. 
The dataset includes the values of the different attributes (discussed later) as EMF = low, AOD(M) 
= low, AOD(D) = low and Cnt = High..To validate and propose this rule, here, out of every possible 
rule permutation certain permutations are listed in form of rule 1A, 1B, 1C. The progress from 1A TO 
1B TO 1C is marked by closer observations of the dataset in which the multiple values are reduced 
to fixed values:

Figure 10. Overlap score values (Ovlij) for case 1 identified above

Figure 8. Box plot representing median Latitude for all years

Figure 9. Box plot representing median longitude for all years
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Overlap
ij
= 0 	 (4)

The rules for the considered case are described below.

Rule 1A: Statement: IF Electromagnetic field € [low; high] ∩ Count € [high] ∩ angle of deviation(day) 
€ [low; med; high; very high] ∩ angle of deviation(month) € [low; med; high; very high] THEN 
Output = Y.

Explanation: The formulated rule starts with all possible permuted values of every attribute considered 
here except the count. The data values for the count attribute were observed to be close to constant 
over the majority of the segmented data, demonstrating that the sea turtle population faced no 
abnormalities over a considerable period of years before the tsunami year of 2004. The small 
count variations are assumed to be due to the turtles’ reproduction cycle; thus, the count increases 
at a slow pace, which is reflected here in weeks to months.

Rule 1B: Statement: IF Electromagnetic field € [low] ∩ Count € [low; med; high] ∩ angle of 
deviation(day) € [low; med; high; very high] ∩ angle of deviation(month) € [low; med; high; 
very high] THEN Output = Y.

Explanation: The progression to this rule is based on observation of the next attribute value: 
Electromagnetic field, after fixing the Count attribute value to high in the previous rule. In this 
rule, every attribute except EMF (Electromagnetic field) is permuted under every possible value.

Rule 1C: Statement: IF Electromagnetic field € [low] ∩ Count € [high] ∩ angle of deviation(day) € 
[low] ∩ angle of deviation(Month) € [low; med; high; very high] THEN Output = Y.

Explanation: As per the observation of previous two rules, the values of two attributes, EMF 
and Count, are held to low and high respectively under the previously cited observed 
reasons. The next attribute, angle of deviation(day) is kept low due to similar observations 
over the complete dataset. The last attribute here, angle of deviation(month) is permuted 
for every value.

Case 2
From Equation 3, the following function is obtained:

Overlap score Ops
Ovl

_ ( )
.

=
< ≤ ≤

 0 551 1 4

0

 for 

       otherwise





	 (5)

Figure 11 shows the overlap scores obtained for all four parameters. As the majority values fall 
below 0.55 hence equation 5 gives overlap value for this case.

Using the OBF_MB approach, the rules extracted from the above case are described below:

Rule 2A: Statement: IF Electromagnetic field € [high] ∩ Count € [medium] ∩ angle of deviation(day) 
€ [very high] ∩ angle of deviation(month) € [medium] THEN Output = Y.

Explanation: As the dataset window becomes closer to the alert year of 2004, the values of the 
parameter attributes considered here are reduced to fixed values highlighted in the rule itself. 
There is a considerable change in the EMF and Count values as well as the turtles’ navigation 
directions in terms of angle of deviation. OBF_MB shows the conditions (lines 29 and 36 of 
OBF_MB) from which this rule is obtained.

Rule 2B: Statement: IF Electromagnetic field € [high] ∩ Count € [low] ∩ angle of deviation(day) € 
[high] ∩ angle of deviation(month) € [high] THEN Output = Y.
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Explanation: In the latter part of the dataset, the attribute values depict a change that is captured 
by OBF_MB.

Case 3
Using Equation 3 and the proposed Algorithm 1, the following function is obtained:

Overlap score Ops
Ovl

_ ( )
.

=
> ≤ ≤

 0 551 1 4

0

 for 

       otherwise





	 (6)

Figure 12 shows the overlap scores obtained for all four parameters. As the majority values fall 
above 0.55 hence equation 6 gives overlap value for this case 3.

A high overlap indicates a change in the marine behavior that existed just before the onset of 
the tsunami at the end of 2004. This observation can also be justified by the fact of that the extracted 
rules stem from data with less information collected on the days closer to the tsunami of 2004. This 
therefore indicates that sea turtle behavior became abnormal days before the onset of the tsunami.

Rule 3: Statement: IF Electromagnetic field € [high] ∩ Count € [low] ∩ angle of deviation(day) € 
[very high] ∩ angle of deviation(month) € [very high] THEN Output = Y.

Figure 11. Overlap score values (Ovlij) for case 2 identified above

Figure 12. Overlap score values (Ovlij) for case 3
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Explanation: Considering the dataset window, which has narrowed down in this case, OBF_MB 
captures a strict value-oriented fuzzy rule with yet-to-be-validated output. This rule expresses 
the conditions of the marine as well the geophysical behavior closest to the tsunami day of 2004 
near the Indian Ocean.

RESULTS AND DISCUSSION

Opinion Score
To evaluate the inferences obtained from the fuzzified rules obtained using the calculated 
overlap score (see Equation 3), the information gain (ΔIfGain)is evaluated using Equation 7 
for every case corresponding to a rule. The opinion score mines the information in terms of 
the polarized output Y. Equation 7 coins an overridden score formulation following (Afzaal 
M. et al 2016) to mine a score-based opinion regarding the alert situation from each fuzzy 
rule. The score thus produces a deviation from the default rule obtained in Case 3. Case 3 is a 
typical representation of year 2004 tuple data. The information gain, denoted as Delta ΔIfGain, 
formalizes the opinion scoring to extract the polarized output Y in the form of a deviation 
from year 2004 using Equation 8.

The polarized data forms the basis for obtaining the alert, pre-alert or no-alert ternary 
classification. This classification based on marine behavior can then be used with other 
sensed data, comparing the collected patterns with existing scores to extract ternary classified 
information. Equation 7, used to acquire the information gain-based opinion score is shown 
below, in which NL

’ and NH
’ represent the number of LOW and HIGH valued instances 

participating in the rule, respectively. Similarly, NL and NH respectively represent the number 
of LOW and HIGH valued instances participating in the default rule. The default rule here 
corresponds to the case 3:

OpNScore N
N

N N

N

N Nij L
L

L H

L

L H

= ′
′

′ + ′












−

+
* log log

2 2
	 (7)

Using Equations 7 and 8, Table 5 shows an analysis for every case-based rule. A 
default opinion for the year 2004 (the known tsunami year) is shown in Table 5 as +2. 
Figure 13 and Figure 14 present the opinion score vs. the mean overlap score for all 
cases and the corresponding information gain, respectively. The ternary classification is 
well-ref lected in both figures. Calculating opinion score over default rule is identified 
as change in score from the already known year of 2004 data values. The change in 
polarity characterizes the shifts in opinion and information over the previous year data 
marine behavior values.

Information Gain
The within-year 2004 analysis discussed in Case 3 generates a high positive opinion (also known as 
the default opinion (DefaultOp)), while the other, subsequent years (any year i) produce very low 
opinions, which results in a high deviation in terms of information gain.

∆ =
−

IfGain O NScore Opinion

O NScore Defaul
p ij i

p ij

[ ]

[            ttO
p
]
	 (8)
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CONCLUSION

This article focused on the need for an automated system to create tsunami alerts based on marine 
behavior. The system is proposed here, FABETP, provides a polarized information-based classification 
in terms of opinion and information gain. This system extracts information from the attributes of a 
sea turtle activity dataset that includes the data values for 2004. Various marine and terrestrial species 

Figure 13. Overlap score values (Ovlij) for case 3 identified above

Table 5. Extracted Fuzzy rules with opinion and ΔIfGain values along with predicted output Y

Case 
Number Fuzzy Rule OpNScore ΔIfGain Output 

= Y

Rule 1A

IF Electromagnetic field € [low; high] ∩ Count € [high] ∩ angle 
of deviation(day) € [low; med; high; very high] ∩ angle of 
deviation(month) € [low; med; high; very high] THEN﻿
Output = Y

-2.64 -4.64 Y = No 
Alert

Rule 1B
IF Electromagnetic field € [low] ∩ Count € [low; med; high] ∩ 
angle of deviation(day) € [low; med; high; very high] ∩ angle of 
deviation(month) € [low; med; high; very high] THEN Output = Y

-2.74 -4.74 Y = No 
Alert

Rule 1C
IF Electromagnetic field € [low] ∩ Count € [high] ∩ angle of 
deviation(day) € [low] ∩ angle of deviation(Month) € [low; med; high; 
very high] THEN Output = Y

-1 -3 Y = No 
Alert

Rule 2A
IF Electromagnetic field € [high] ∩ Count € [medium] ∩ angle of 
deviation(day) € [very high] ∩ angle of deviation(month) € [medium] 
THEN Output = Y

+0.42 1.58
Y = 
Pre 
Alert

Rule 2B
IF Electromagnetic field € [high] ∩ Count € [low] ∩ angle of 
deviation(day) € [high] ∩ angle of deviation(month) € [high] THEN 
Output = Y

+2 0 Y = 
Alert

Rule 3
IF Electromagnetic field € [high] ∩ Count € [low] ∩ angle of 
deviation(day) € [very high] ∩ angle of deviation(month) € [very high] 
THEN Output = Y

+2 0 Y = 
Alert
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have been reported to respond to seismic perturbations in the past. This paper adds and validates sea 
turtles as another passive messenger whose behavioral activities can be sensed to predict tsunamis. 
The produced classification is based on fuzzified constraints commonly called rules produced by 
the proposed OBF_MB technique, which utilizes the overlap function evaluation to extract fuzzy 
if-then rules. A clear change in opinion and corresponding information gain can be observed when 
an induced physical attribute and the consequent marine behavioral attributes for the year 2004 are 
compared with themselves and with other no alert-tsunami tears. The OpNScore ranges from +2 to 
-2.64 and the Delta IfGain ranges from 0 to -4.64. A striking coinciding opinion of +2 is observed 
in the days close to 2004, depicting the pre-tsunami effects of waves that initially affect marine 
behavior. This score can be accounted as a default or baseline for any future prediction. To the best 
of our knowledge, this is the first system that mines opinion from extracted fuzzy rules based on sea 
turtle behavior to predict tsunamis. The proposed opinion-based fuzzification rules and information 
gain can be used to design a marine-based tsunami-meter to generate real time alerts.

Figure 14. Overlap score values (Ovlij) for case 3 identified above
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