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Summary. Swarm Intelligence (SI) is an innovative distributed intelligent paradigm
whereby the collective behaviors of unsophisticated individuals interacting locally with
their environment causing coherent functional global patterns to emerge. The intelli-
gence emerges from a chaotic balance between individuality and sociality. The chaotic
balances are a characteristic feature of the complex system. This chapter investigates
the chaotic dynamic characteristics in swarm intelligence. The swarm intelligent model
namely the Particle Swarm Optimization (PSO) algorithm is represented as an Iter-
ated Function System (IFS). The dynamic trajectory of the particle is sensitive on
the parameter values of IFS. The Lyapunov exponent and the correlation dimension
are calculated and analyzed numerically for the dynamic system. Convergence of the
swarm model is also analyzed. Our research findings illustrate that the performance
of the swarm intelligent model depends on the sign of the maximum Lyapunov expo-
nent. The particle swarm with a high maximum Lyapunov exponent usually achieves
better performance, especially for multi-modal functions. The research would be help-
ful to parameter selection and algorithm improvements for the swarm intelligence
applications.
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1 Introduction

Swarm Intelligence (SI) is mainly inspired by social behaviour patterns of organ-
isms that live and interact within large groups of unsophisticated autonomous
individuals. In particular, it incorporates swarming behaviours observed in flocks
of birds, schools of fish, or swarms of bees, colonies of ants, and even human so-
cial behavior, from which the intelligence is emerged [1, 2, 3]. SI provides a
framework to explore distributed problem solving without centralized control or
the provision of a global model. The particle swarm model helps to find optimal
regions of complex search spaces through interaction of individuals in a popu-
lation of particles [4]. It has exhibited good performance across a wide range of
applications [5, 6, 7, 8, 9, 10, 11].
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In the swarm dynamic system, the intelligence emerges from a chaotic balance
between individuality and sociality. The chaotic balances are a characteristic
feature of the complex system. Bergh and Engelbrecht [34] overviewed current
theoretical studies, and investigated particle trajectories for general swarms to
include the influence of the inertia term. They also provided a formal proof that
each particle converges to a stable point. Many studies on swarm intelligence
have been presented and even some improved algorithms were proposed based
on the chaotic search behavior. For a given energy or cost function, by following
chaotic ergodic orbits [12], a chaotic dynamic system may eventually reach the
global optimum or its good approximation with high probability. To enhance the
performance of particle swarm optimization (one of the swarm intelligent mod-
els), Liu et al. [13] proposed hybrid particle swarm optimization algorithm by in-
corporating chaos. The proposed chaotic particle swarm optimization algorithm
combined the population-based evolutionary search ability of particle swarm op-
timization and chaotic search behavior. Simulation results and comparisons with
the standard particle swarm optimization and several other meta-heuristics il-
lustrated that the approach could effectively enhance the search efficiency and
significantly improve the search quality. Since chaotic mapping possesses prop-
erties of certainty, ergodicity and stochastic property, Jiang and Etorre [14, 15]
introduced chaos mapping into the particle swarm optimization algorithm for
reactive power optimization and short term hydroelectric system scheduling in
a deregulated environment. Alatas et al. [16] embedded different chaotic maps
to adapt the parameters of PSO algorithm. Empirical results demonstrated that
the performance of the algorithms was improved obviously owing to its fast
convergence and high precision.

However, not much work has been reported in the literature on the chaotic
characteristics in swarm intelligence. In fact, several other studies in diverse
fields indicated the analysis of the chaotic characteristics contributed to the
understanding and applications of those complex systems. Chen [17] investi-
gated the chaotic phenomena in macroeconomic systems, and offered an expla-
nation of the multi-periodicity and irregularity in business cycles and of the
low-dimensionality of chaotic monetary attractors. The empirical and theoreti-
cal results improved monetary control policy and the approaches to forecasting
business cycles. Chialvo et al. [18] studied chaotic patterns of activation and
action potential characteristics in the cardiac tissues. Empirical results indi-
cated an apparent link between the mechanism of low dimensional chaos and
the occurrence of reflected responses which could lead to more spatially disor-
ganized phenomena. Frank et al. [19] analyzed the chaotic characteristics in the
brain dynamics to predict changes of epileptic seizures. Goldberger et al. [20],
Freeman [21] and Sarbadhikari and Chakrabarty [22] illustrated that chaos has
a great important influence on brain and the evolutionary relationship between
species. The investigations of chaotic dynamics in neural networks [23] promoted
the development of neural networks and chaotic neural networks [24, 25]. The
chaotic balances and their characteristic in swarm intelligence has become very
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importance for its deeper understanding, application development and designing
new computational models.

This chapter investigates the chaotic dynamic characteristics in swarm intelli-
gence, and analyzes their relationship with the performance of SI. Particle swarm
model is investigated as a case study. The swarm intelligent model is represented
as an iterated function system (IFS) [26]. We simulate and analyze the dynamic
trajectory of the particle based on the IFS. The Lyapunov exponent and the
correlation dimension are calculated and analyzed numerically for the dynamic
system. We attempt to discuss the relation between the algorithm convergence
and the velocities of the particles. The dependence of the parameters is discussed
analytically using several function optimization experiments.

The rest of the article is organized as follows. Particle swarm model is pre-
sented in Section 2. The concepts of iterative function system and its sensitivity
is illustrated in Section 3. Dynamic chaotic characteristics are depicted and dis-
cussed in Section 4 and finally Conclusions are provided in Section 5.

2 Particle Swarm Model

A particle swarm model consists of a swarm of particles moving in a d-
dimensional search space where the fitness f can be calculated as a certain
quality measure. Each particle has a position represented by a position-vector
xi (i is the index of the particle), and a velocity represented by a velocity-vector
vi. Each particle remembers its own best position so far in a vector pi, and its
j-th dimensional value is pi,j . The best position from the swarm thus far is then
stored in a vector p̂, and its j-th dimensional value is p̂j . During the iteration
time t, the update of the velocity from the previous velocity is determined by
Eq. (1). Subsequently, the new position is determined by the sum of the previous
position and the new velocity by Eq. (2).

vi,j(t) = wvi,j(t− 1) + c1r1(pi,j(t− 1)− xi,j(t− 1))
+ c2r2(p̂j(t− 1)− xi,j(t− 1))

(1)

xi,j(t) = xi,j(t− 1) + vi,j(t) (2)

where r1 and r2 are the random numbers, uniformly distributed within the inter-
val [0,1] for the j-th dimension of i-th particle. c1 is a positive constant termed as
the coefficient of the self-recognition component; c2 is a positive constant termed
as the coefficient of the social component. The variable w is the inertia factor,
for which value is typically setup to vary linearly from 1 to 0 during the iterated
processing. From Eq. (1), a particle decides where to move next, considering its
own experience, which is the memory of its best past position, and the experi-
ence of its most successful particle in the swarm. In the particle swarm model,
the particle searches the solutions in the problem space within a range [−s, s]
(If the range is not symmetrical, it can be translated to the corresponding sym-
metrical range.) In order to guide the particles effectively in the search space,
the maximum moving distance during one iteration is clamped in between the
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maximum velocity [−vmax, vmax] given in Eq. (3), and similarly for its moving
range given in Eq. (4):

vi,j = sign(vi,j)min(|vi,j | , vmax) (3)

xi,j = sign(xi,j)min(|xi,j | , xmax) (4)

The value of vmax is ρ× s, with 0.1 ≤ ρ ≤ 1.0 and is usually chosen to be s, i.e.
ρ = 1. The pseudo-code for particle-search is illustrated in Algorithm 1.

Algorithm 1. Particle Swarm Model
01.Initialize the size of the particle swarm n, and other parameters.
02.Initialize the positions and the velocities for all the particles randomly.
03.While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. p̂(t) = argminn

i=1(f(p̂(t − 1)), f(x1(t)), f(x2(t)), · · · ,
07. f(xi(t)), · · · , f(xn(t)));
08. For i= 1 to n
09. pi(t) = argminn

i=1(f(pi(t − 1)), f(xi(t));
10. For j = 1 to d
11. Update the j-th dimension value of xi and vi

12. according to Eqs. (1), (3), (2), (4);
13. Next j
14. Next i
15.End While.

3 Iterated Function System and Its Sensitivity

Clerc and Kennedy have stripped the particle swarm model down to a most
simple form [27]. If the self-recognition component c1 and the coefficient of the
social-recognition component c2 in the particle swarm model are combined into
a single term c, i.e. c = c1 + c2, the best position pi can be redefined as follows:

pi ← (c1pi + c2p̂)
(c1 + c2)

(5)

Then, the update of the particle’s velocity is defined by:

vi(t) = vi(t− 1) + c(pi − xi(t− 1)) (6)

The system can be simplified even further by using yi(t − 1) instead of pi −
xi(t− 1). Thus, the reduced system is then:

{
v(t) = v(t− 1) + cy(t− 1)
y(t) = −v(t− 1) + (1− c)y(t− 1)
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Fig. 2. Trajectory of the particle (a) c = 2.9, (b) c = 2.999, (c) c = 2.999, (d)
c = 2.9999

This recurrence relation can be written as a matrix-vector product, so that
[
v(t)
y(t)

]
=

[
1 c
−1 1− c

]
·
[
v(t− 1)
y(t− 1)

]

Let

Pt =
[
vt

yt

]

and

A =
[

1 c
−1 1− c

]
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Fig. 3. Trajectory of the particle (a) c = 3.7321, (b) c = 3.8, (c) c = 3.9, (d) c = 3.999
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Fig. 4. 2D versus 3D (a) 2D: c = 1.3820, (b) 3D: c = 1.3820

we have an iterated function system for the particle swarm model:

Pt = A ·Pt−1 (7)

Thus, the system is completely defined by A. Its norm ‖A‖2 (also written ‖A‖)
is determined by c. The relationship of A and its dependence on c is illustrated
in Figure 1.

IFS is sensitive to the values of c. It is possible to find different trajectories of
the particle for various values of c. Figure 2(a) illustrates the system for a torus
when c=2.9; Figure 2(b), a hexagon with spindle sides when c=2.99; Figure 2(c),
a triangle with spindle sides when c=2.999; Figure 2(d), a simple triangle when
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c=2.9999. As depicted in Figure 2, the iteration time step used is 100 for all the
cases. Another system sensitivity instance is illustrated in Figure 3. It is to be
noted that Figures 2 and 3 illustrate only some 2-dimensional representations of
the iterated process. A comparison between 2D and 3D is illustrated in Figure 4.

4 Dynamic Chaotic Characteristics

Chaotic dynamics is defined by a deterministic system with non-regular, chaotic
behavior [28]. They are both sensitive to initial conditions and computational
unpredictability. The Lyapunov exponent and correlation dimension are most
accessible in numerical computations based on the time-series of the dynam-
ical system [29]. In this Section, we introduce the algorithm to compute the
Lyapunov exponent and correlation dimension for quantitative observation of
dynamic characteristics of the particles, and then analyze the relation between
chaos and the swarm intelligent model.

4.1 Lyapunov Exponent

Lyapunov exponents provide a way to identify the qualitative dynamics of a sys-
tem, because they describe the rate at which neighboring trajectories converge
or diverge (if negative or positive, respectively) from one another in orthogonal
directions. If the dynamics occur in an n-dimensional system, there are n ex-
ponents. Since the maximum exponent will dominate, this limit is practically
useful only for finding the largest exponent. Chaos can be defined as the diver-
gence between neighboring trajectories and the presence of a positive exponent
could be considered as the diagnostic of chaos. For an IFS, Lyapunov exponents
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measure the asymptotic behavior of tangent vectors under iteration. The maxi-
mum Lyapunov exponent can be found using [30]:

Le1 = lim
N→∞

1
N

N∑
n=1

ln(
dn

d1
) (8)

where dn is the distance between the n-th point-pair. Le1 can be calculated
using a programmable calculator to a reasonable degree of accuracy by choosing
a suitably large value of “N”. Using the time series generated from the IFS
Eq. (7), the maximum Lyapunov exponent Le1 of the particle swarm model
is calculated. The results are illustrated in Figure 5. The maximum Lyapunov
exponent steadily increases with the value of c in the interval [0.5, 4] and it
bounds to reach a very high level when the value of c falls within the [0, 4]
interval.

4.2 Correlation Dimension

The dimension in a chaotic system is a measure of its geometric scaling property
or its “complexity” and it has been considered as one of the most basic prop-
erties. Numerous methods have been proposed for characterizing the dimension
produced by chaotic flows and one of the most common metrics is the correlation
dimension, popularized by Grassberger and Procaccia [31]. It measures the prob-
ability that two points chosen at random will be within a certain distance of each
other, and examines how this probability changes as the distance is increased.
During the past decades, several investigators have undertaken nonlinear analy-
sis using Grassberger and Procaccia’s algorithm (GP algorithm) to evaluate the
correlation dimension of time-series data [32, 33].

Given by N points {x1,x2, · · · ,xN} from the iterated processes of IFS, the
definition of the correlation integral is

C(r) = lim
N→∞

1
N2

N∑
i,j=1
i�=j

H(r − |xi − xj |) (9)

where H(x) is the Heaviside step function. When the limit exists, the correlation
dimension is then defined as Eq. (10):

D2 = lim
r,r′→+0

ln
(
C(r)/C(r′)

)
ln(r/r′)

(10)

In practice, C(r) is calculated for several values of r and then a plot is con-
structed for lnC(r) versus ln(r) to estimate the slope, which then approximates
the correlation dimension D2. In the particle swarm model, for c = 3.9 , the
slope, i.e. D2 is illustrated in Figure 6 in the interval [0, 4]. The correlation
dimension is depicted in Figure 7. There are no obvious differences for c values
increasing within the interval of [0, 4]. D2 is fluctuating mainly within 1 ± 0.2
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and it is to be noted that the correlation dimension is very small when c is
close to 3. Our experiment results also further validates the constant constric-
tion coefficient w using the “classical” value w = 1/(2 ∗ ln(2)) = 0.7213 and the
recommended value for c = (w + 1)2 = 2.9630 [27].

For the iterated system determined by Eq. (7), the eigenvalues of A are λ1

and λ2. We are looking for pair of values (c, k) so that

Ak = I (11)

where I is the identity matrix. We have det (A) > 0 (equal to 1, in fact), so it
exists P so that

P−1AP = Λ (12)
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where

Λ =
[

λ1 0
0 λ2

]

Eq. (11) can then be rewritten

(
PΛP−1

)k
= Λk = I (13)

It means we must have
λk

1 = λk
2 = 1 (14)

But we have {
λ1 = 1− c

2 +
√

Δ

λ2 = 1− c
2 −
√

Δ
(15)

with c is strictly positive, and

Δ =
(
1− c

2

)2

− 1

So it is possible for Eq. (14) only if the eigenvalues are true complex numbers,
i.e. if Δ is strictly negative. It implies that c must be smaller than 4. It is easy to
see that we have |λ1| = |λ2| = 1. So finally the only condition to have a perfect
cycle of size k:

1− c

2
= cos

(
2π

k

)
(16)

i.e.

c = 2
(

1− cos

(
2π

k

))
(17)

There are an infinity of such cycles for small c values (smaller than 1),
but in [1, 4[ the only possible ones are for cycle sizes k = 6, 5, 4, 3, i.e.
c = 1, 1.382, 2, 3. It means in particular that if we generate a sequence of
points in the particle swarm model by using one of these c values, the correla-
tion dimension will be very small. On the contrary for other values we obtain a
correlation dimension near to 1, which is the value for pure random distribution.

4.3 Convergence Analysis

We consider further the iterated system determined by Eq. (7) and the eigenval-
ues of A are λ1 and λ2. Without loss of generality and to simplify the notation,
the derivation is performed in one dimension only, using a single particle [34].
The explicit form of the recurrence relations in Eqs. (1) and (2) is then given by

x(t) = k0 + k1λ
t
1 + k2λ

t
2 (18)

A similar kind of expression for v(t) is now produced:

v(t) = h1λ
t
1 + h2λ

t
2 (19)
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where k0, k1, k2, h1 and h2 are constants determined by the initial conditions of
the system. For the initial conditions,

k0 =
c1r1p + c2r2p̂

c1r1 + c2r2

k1 =
λ2(x(0)− x(1))− x(1) + x(2)√

Δ(λ1 − 1)

k2 =
λ1(x(1)− x(0)) + x(1)− x(2)√

Δ(λ2 − 1)

h1 =
v(1)− λ2v(0)

λ1 − λ2

h2 =
λ2v(0)− v(1)

λ1 − λ2

Since |λ1| = |λ2| = 1, we consider the value of x(t) from Eq. (18) in the limit,
thus:

lim
t→+∞x(t) = lim

t→+∞(k0 + k1λ
t
1 + k2λ

t
2)

= k0 + k1 lim
t→+∞λt

1 + k2 lim
t→+∞λt

2

= k0 + k1 + k2.

Accordingly we consider the value of v(t) from Eq. (19) in the limit as follows:

lim
t→+∞ v(t) = lim

t→+∞(h1λ
t
1 + h2λ

t
2)

= h1 lim
t→+∞λt

1 + h2 lim
t→+∞ λt

2

= h1 + h2

= 0.

The results of the limits indicate the trajectory of the particle x(t) will con-
verge to a stable point and the velocity of the particle v(t) gradually weakens
until it stops. The gradual change of the particle’s velocity can be explained ge-
ometrically. During each iteration, the particle is attracted towards the location
of the best fitness achieved so far by the particle itself and by the location of the
best fitness achieved so far across the whole swarm. From Eq. (1), vi,j can attain a
smaller value, but if the second term and the third term in the RHS of Eq. (1) are
both small, it cannot resume a larger value and could eventually loose the explo-
ration capabilities in the future iterations. Such situations could occur even in the
early stages of the search. When the second term and the third term in the RHS of
Eq. (1) are zero, vi,j will be damped quickly with the ratio of w. In other words, if
a particle’s current position coincides with the global best position/particle, the
particle will only move away from this point if its previous velocity and w are non-
zero. If their previous velocities are very close to zero, then all the particles will
stop moving once they catch up with the global best particle, which many lead to
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premature convergence. In fact, this does not even guarantee that the algorithm
has converged to a local minimum in some complex or dynamic environments, and
it merely means that all the particles have converged to the best position discov-
ered so far by the swarm. This state owes to the second term and the third term
in the RHS of Eq. (1), the cognitive components of the PSO. But if the cognitive
components of the PSO algorithm are invalidated, all particles always search the
solutions using the initial velocities. Then the algorithm is merely a degenerative
stochastic search without the characteristics of PSO.

Due to the limited space, we do not demonstrate the improvements to the
performance of swarm intelligence in this chapter. Reader may consult CPSO,
CwPSO and CEPSO algorithms for the technical details. Liu, et al. [13] proposed
hybrid particle swarm optimization algorithm by incorporating chaos. In CwPSO
algorithm [14], the objective was to introduce chaos theory so that chaotic map-
ping enjoys certainty, ergodicity and stochastic property to improve the explo-
ration ability of the algorithm. Simulation results and comparisons with the stan-
dard particle swarm optimization and several other meta-heuristics have shown
that the approach could effectively enhance the search efficiency and greatly im-
prove the searching quality. The trajectory of particles was given a lot of impor-
tance rather than their velocities. The velocity could be driven by chaotic dy-
namic. It is also an ideal improvement approach, since the chaotic characteristics
influence indirectly and softly the position/solution. Alatas, et al. [16] embed-
ded different chaotic maps to adapt the parameters of PSO algorithm. Twelve
chaos-embedded PSO methods have been proposed and eight chaotic maps have
been analyzed in the benchmark functions. It have been detected that coupling
emergent results in different areas, like those of PSO and complex dynamics, can
improve the quality of results in some optimization problems and also that chaos
may be a desired process. It has been also shown that, these methods have some-
what increased the solution quality, that is in some cases they improved the global
searching capability by escaping the local solutions.

4.4 Model Performance Demonstration

In order to analyze the relationship between chaos and the swarm intelligent
model, we optimized three unconstrained real-valued benchmark functions, and
then investigated the performance of the model against the dynamic chaotic
characteristics.

First, we considered the Rastrigin’s function (f1), given by Eq. (20). It is a
continuous, multimodal function with multiple local minima. The function has
a “large scale” curvature which guides the search towards the global minimum,
x∗ = (0, · · · , 0), with f(x∗) = 0 in the interval [−5.12, 5.12].

Next, we considered the Zakharov’s function (f2), given by Eq. (21). It is a
continuous, multimodal function, and has the minimum, x∗ = (0, · · · , 0), with
f(x∗) = 0 in the interval [−10, 10].

Finally, we also evaluated the Levy’s function (f3), given by Eq. (22). It is
a continuous, multimodal function with an offset, since it has the minimum,
x∗ = (1, · · · , 1), with f(x∗) = 0 in the interval [−10, 10].
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Fig. 9. The performance for 5-D Zakharov’s function

f1(x) =
n∑

i=1

[x2
i − 10cos(2πxi) + 10] (20)

f2(x) =
n∑

i=1

x2
i +

(
n∑

i=1

1
2
ixi

)2

+

(
n∑

i=1

1
2
ixi

)4

(21)

f3(x) =
π

n

(
ksin2(πy1) +

n−1∑
i=1

((yi − a)2(1 + ksin2(πyi+1))) + (yn − a)2
)

;

yi = 1 +
1
4
(xi − 1); k = 10; a = 1. (22)
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Fig. 10. The performance for 5-D Levy’s function

The goal of the particle swarm algorithm is to find the global minimum for
functions (20) to (22). All experiments for the functions were run 10 times, and
the average fitness were recorded. The swarm size was set at 20, and 1000 itera-
tions for the trials. The results are illustrated in Figure 8 for Rastrigin’s function,
Figure 9 for Zakharov’s function and Figure 10 for Levy’s function, respectively.
It is obvious that the values of c within the interval [0, 4] is fit for the model be-
cause the performance is much better than the other values of c. It is consistent
with the Lyapunov exponent and the correlation dimension of the model as illus-
trated in Figures 5 and 7. In the interval [0, 4], the particle swarm optimization
algorithm with a high maximum Lyapunov exponent usually achieved better per-
formance. The positive Lyapunov exponent describes the rate at which neighbor-
ing trajectories diverge. A high Lyapunov exponent in the particle swarm system
implies that the particles are inclined to explore different regions and find bet-
ter fitness values. But the big Lyapunov exponent would lead the system not to
converge. The particles usually have to search solutions randomly because of the
clamping of velocity and position. Compared to the correlation dimension of the
system, the performance of the system is better when the c is close to 3.

5 Conclusion

In this chapter, we focused on the chaotic dynamic characteristics in swarm
intelligence. Particle swarm was investigated as a case and the swarm model
was represented by the Iterated Function System (IFS). The dynamic trajectory
of the particle was sensitive on the value of the IFS parameters and the sen-
sitivity of the system is illustrated. We introduced the algorithms to compute
numerically the Lyapunov exponent and correlation dimension for quantitative
observation of dynamic characteristics of the particles, convergence analysis, and
then analyzed the dependence of the parameters using some function optimiza-
tion experiments. The results illustrated that the performance of the swarm
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intelligent model depended on the sign of the maximum Lyapunov exponent.
The particle swarm optimization algorithm with a little high maximum Lya-
punov exponent usually achieved better performance, especially for the multi-
modal functions. The correlation dimension of the system could recommend some
values for the parameters.

Since the performance of the swarm intelligent model usually depends relatively
on its Lyapunov exponent and correlation dimension, it would provide some new
ideas for developing new swarm intelligent models. If we can design some models
with a little highermaximum Lyapunov exponent, itmight be possible to construct
a new swarm intelligence model with better performance. The correlation dimen-
sion of the system would provide some suggestions for the parameter selection.
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