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Abstract
This article presents particle swarm optimization (PSO)-based optimal gain tuning of proportional integral (PI)
speed controller in an induction motor (IM) drive (30 hp) with mine hoist load diagram. Optimization considers
the load and speed variations, and provides appropriate gains to the speed controller to obtain good dynamic
performance of the motor. IM performance is checked with the optimal gains through the simulation studies in
MATLAB/SIMULINK environment. Results are compared with hand tuning (fixed gains) and fuzzy logic (FL)
speed controller. Hybrid of FL and PSO-based PI controller for the speed control of given motor is also performed
to eliminate the drawbacks of PI controller (overshoot and undershoot) and FL controller (steady-state error).
From the simulation studies, hybrid controller produces better performance in terms of rise time, overshoot and
settling time.
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1 Introduction

Optimization is one of the most discussed topics in engineering and applied research. Many
engineering problems can be formulated as optimization problems, e.g. economic dispatch
problem, pressure vessel design, VLSI design, communication system, etc. These problems
when subjected to a suitable optimization algorithm help in improving the quality of solu-
tion. Due to this reason the Engineering community has shown a significant interest in
soft computing techniques. In particular, there has been a focus on evolutionary algorithms
(EAs) for obtaining the global optimum solution to the problem, because in many cases it
is not only desirable but also necessary to obtain the global optimal solution. Evolution-
ary algorithms have also become popular because of their advantages over the traditional
optimization techniques such as decent method, quadratic programming approach, etc.
Some important differences of EAs over classical optimization techniques are as follows:

• Evolutionary algorithms start with a population of points, whereas the classical opti-
mization techniques start with a single point.
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• No initial guess is needed for EAs; however, a suitable initial guess is needed in most of
the classical optimization techniques.
• EAs do not require an auxiliary knowledge like differentiability or continuity of the
problem, on the other hand classical optimization techniques depend on the auxiliary
knowledge of the problem.
• The generic nature of EAs makes them applicable to a wider variety of problems,
whereas classical optimization techniques are problem specific.

Some common EAs are genetic algorithms, evolutionary programming, particle swarm
optimization (PSO), differential evolution, bacterial foraging, etc. These algorithms have
been successfully applied for solving numerical benchmark problems and real-life problems.
Several attempts have been made to compare the performance of these algorithms with each
other [1, 3, 7, 11, 12, 17, 18]. How the artificial intelligence, particularly neural network,
provides interesting solutions in the computer security problems are discussed in [4, 5].
In the present study, we investigate the performance of PSO for optimizing the PI speed
controller gains of the induction motor (IM).
IM can be considered as one of the largest consumers of electrical energy due to its well-
known advantages including robustness, reliability, low price and maintenance free operation.
The IMs are used in both industrial and commercial sectors in a wide range of applications,
such as fans, compressors, pumps, conveyors, winders, mills, transports, elevators, home
appliances and office equipments. In some applications of vector-controlled IM like mine
hoist and high dynamic performances (torque and speed control) are required. Hence, the
research potential of the drive is especially towards development of speed controller, so that
performance of the motor is optimized. In this article, PI gains (optimal values) for various
operating regions of mine hoist load are obtained off-line by PSO based on the speed error
and its derivative of IM. The optimized gain values are arranged in a look-up table and are
fed to the controller to simulate the drive.
The remaining of the article is organized as follows: in Section 2, a brief overview of PSO
is presented; Section 3 gives the mathematical models of IM and speed controllers, results
are given in Section 4. Finally, the article concludes with Section 5. Pseudo-code of PSO
algorithm is given in Appendix A.

2 PSO

PSO was first suggested by Kennedy and Eberhart in 1995 [6]. The mechanism of
PSO is inspired from the complex social behaviour shown by the natural species.
For a D-dimensional search space the position of the i-th particle is represented as
Xi=(xi1,xi2,...,xiD). Each particle maintains a memory of its previous best position
Pi=(pi1,pi2,...,piD) and a velocity Vi=(vi1,vi2,...,viD) along each dimension. At each iter-
ation, the P vector of the particle with best fitness in the local neighbourhood, designated
g, and the P vector of the current particle are combined to adjust the velocity along each
dimension and a new position of the particle is determined using that velocity. The two basic
equations which govern the working of PSO are that of velocity vector and position vector
are given by

vid=ωvid+c1r1(pid−xid)+c2r2(pgd−xid) (1)
xid=xid+vid (2)
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The first part of (1) represents the inertia of the previous velocity, the second part is tells
us about the personal thinking of the particle and the third part represents the cooperation
among particles and is, therefore, named as the social component. Acceleration constants
c1, c2 and inertia weight ω are predefined by the user and r1, r2 are the uniformly generated
random numbers in the range [0, 1]. Pseudo-code of PSO algorithm used in this study is
available in Appendix A.

3 IM drive system

Figure 1 shows the basic configuration of speed control of IM drive. The drive is controlled
with two control loops, i.e. inner pulse width modulation (PWM) current control loop and
outer speed control loop. Reference or command speed is compared with actual speed of the
drive and speed error is processed through the speed controller. The output of the speed
controller is torque command for the drive. The electrical torque of the drive is directly pro-
portional to the q-axis current component (iqs) of the IM. Dividing the torque command by
torque constant, the q-axis current command is obtained. Gain tuning of PI speed controller
is performed by the PSO algorithm.

3.1 Mathematical model of IM
The squirrel cage IM is modelled using direct and quadrature axes (dq) theory in the sta-
tionary reference frame, which needs fewer variables and hence analysis becomes easy. The
voltage–current relationship in the stationary reference frame of the IM in terms of the dq

FIG. 1. Configuration of vector control of IM drive with speed control loop.
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variable is expressed as [9]

V = [R]i+[L]pi+[G]ωr i+[F ]ωci (3)

In the above equation, [R] matrix consists of resistive elements, [L] matrix consists of the
coefficients of the derivative operator p, [G] matrix has elements that are the coefficients of
the electrical rotor speed ωr and [F ] matrix is the frame matrix, which has the coefficients
of the reference frame speed ωc. In the stationary reference frame, the term [F ]ωci is found
to be identically zero, hence (3) can be rewritten as

[v]= [R][i]+[L]p[i]+ωr [G][i] (4)

Rearranging (4), the current derivative vector can be expressed as follows:

p[i]= [L]−1{[v]−[R][i]−ωr [G][i]
}

(5)

In the above equation, ‘p’ is the differential operator (d/dt) and ‘ωr ’ is the rotor speed in
electrical ‘rad/s’. Three-phase IM is assumed to have balanced windings and connected with
balance supply voltages, thus the zero sequence components are zero.
The electromagnetic torque is obtained by

Te= 32
P
2
Lm (iqsidr−idsiqr) (6)

At the steady-state condition of the motor, (6) can be rewritten as

Te=Ktiqs (7)

where Kt= 3
2
P
2 L
2
mids is a torque constant, which depends on air-gap flux. In the present study,

air-gap flux is also adjusted to run the motor at optimal efficiency. Hence, this constant is
valid only for steady-state operation. P is the number of poles in the motor.

3.2 Speed controller
Proportional integral (PI) controller can be used to control the speed of IM. The PI and
differential (PID) controller is normally avoided because differentiation can be problematic
when input command is a step. Generally, the speed error, which is the difference of reference
speed (ωr(n)*) and actual speed (ωr(n)), is given as input to the controllers. These speed
controllers process the speed error and give torque value as an input. Then the torque value
is fed to the limiter, which gives the final value of reference torque. The speed error and
change in speed error at n-th instant of time are given as

ωre(n)=ω∗
r(n)−ωr(n) (8)

�ωre(n)=ωre(n)−ωre(n−1) (9)

This article considers three types of speed control methods for simulation study: PI controller
with PSO and hand tuning, fuzzy speed controller and hybrid controller [hybridization of
fuzzy logic (FL) and PI].
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FIG. 2. Block diagram of PI speed controller.

3.2.1 PI controller
The general block diagram of the PI speed controller is shown in Figure 2 [14]. The output
of the speed controller (torque command) at n-th instant is expressed as follows:

Te(n)=Te(n−1)+Kp�ωre(n)+Kiωre(n) (10)

where Te(n) is the torque output of the controller at the n-th instant, and Kp and Ki the
proportional and integral gain constants, respectively.
A limit of the torque command is imposed as

Te(n+1)=
{
Temax
−Temax

for Te(n+1)≥Temax
for Te(n+1)≤−Temax (11)

The gains of PI controller shown in (10) can be selected by many methods such as trial
and error method, Ziegler–Nichols method and evolutionary techniques-based searching. The
numerical values of these controller gains depend on the ratings of the motor.

3.2.2 FL speed controller
The PI speed controller, which has been discussed in the previous section, is simple in oper-
ation and has zero steady-state error when operating on load. But the disadvantages of this
PI controller is the occurrence of overshoot while starting, undershoot while load application
and overshoot again while load removal. Furthermore, it requires motor model to determine
its gains and is more sensitive to parameter variations, load disturbances and suffer from
poor performance when applied directly to systems with significant non-linearities [9, 14].
These disadvantages of PI controller can be eliminated with the help of a FL controller,
which need not require model of the drive and can handle non-linearity of arbitrary com-
plexity.
Fuzzy rules of this controller are shown in Figure 3 [8, 15] where the fuzzy variables: NB

stands for negative-big, NM for negative-medium, NS for negative-small, ZE for zero, PB
for positive-big, PM for positive-medium and PS for positive-small.

3.3 Hybrid speed controller
To take over the advantages present in both PI (zero steady-state error) and FL (negligible
overshoot and undershoot) controllers, a hybridization of PI and FL controllers, called fuzzy
pre-compensated PI (FPPI) controller, is done and is used as a single controller. In this
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FIG. 3. Fuzzy sets considered for speed control.

FIG. 4. Block diagram of hybrid (FPPI) speed controller.

controller, FL is used for pre-compensation [8, 10, 13, 15, 16] of reference speed, which
means that the reference speed signal (ω∗

r ) is altered in advance in accordance with the
rotor speed (ωr), so that a new reference speed signal (ω∗

r1) is obtained and the main control
action is performed by PI controller. Some specific features such as overshoot and undershoot
occurring in the speed response, which are obtained with PI controller can be eliminated
[15] and this controller is much useful to mine hoist load where torque/speed of the motor
varies time to time.

3.3.1 Design of hybrid speed controller
As usual, the inputs to the FL are speed error (ω∗

re(n)) and the change in speed error (�ωe(n)),
the output of the FL controller is added to the reference speed to generate a pre-compensated
reference speed (δ), which is to be used as a reference speed signal by the PI controller shown
in Figure 4. The fuzzy pre-compensator can be mathematically modelled as follows [8]:
Referring (8) and (9) for speed error and change in speed error, pre-compensated speed

reference (δ) and updated new reference speed (ω∗
r1) can be calculated as

δ(n)=F
[
ωre(n),�ωre(n)

]
(12)

ω∗
r1=δ(n)+ω∗

r(n) (13)

where F is FL mapping
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3.4 Parameter settings

3.4.1 Objective function
The performance of the IM varies according to PI controller gains and is judged by the
value of Integral Time Absolute Error (ITAE). The performance index ITAE is chosen as
objective function. The purpose of PSO algorithms is to minimize the objective function
or maximize the fitness function, where fitness function is 1/(ITAE+1). If >5% overshoot
occurs in starting speed response a 75% of the penalty is imposed to the fitness value. All
particles of the population are decoded for Kp and Ki .

3.4.2 IM parameters

Torque constant 4.1Nm/A
Phase Stator resistance 0.251 �

Phase rotor resistance 0.249 �

Phase inductance 1.4mH
Mutual inductance 41.6mH
Number of poles 4
Moment of inertia of motor 0.305 kgm2

Rated speed 314 rad/s (electrical)

3.4.3 Parameter settings for the PSO algorithm
Swarm size: 20.
Inertia weight (w): linearly decreasing (0.9–0.4)
Acceleration constants: c1=c2=2.0.
Since PSO algorithm is stochastic in nature, more than one execution is needed to reach to
a solution. A maximum of 25 iterations were fixed for the optimization algorithm.
The algorithm was implemented using Turbo C++ on a PC compatible with Pentium IV,
a 3.2GHz processor and 2GB of RAM.

4 Experimental results and discussions

To illustrate the importance of efficient speed controllers in the industrial drives, we consid-
ered the load diagram of hoist in a mineral industry (Figure 5) [2, 16]. A motor, normally high
rated (in MW), is employed with mine hoist and is operated with variable load and speed as
shown in Figure 5. Region ‘t1’ of this load diagram offers 1.5 times rated load and half-rated
speed of the motor. This article considers a 30 hp motor and focuses all regions and partic-
ularly the instant at which step changes occur in the torque and speed. Table 1 shows the
results of PSO algorithm in terms of control parameters Kp and Ki . These gains are used as
a look-up table in the simulation study of IM. The motor is accelerated to the step speed
command of 0.5, 1.0 and 0.5 pu corresponding to the regions of Figure 5 from start. Similar
to speed command, torque command is also changed in accordance with the load diagram.
The given load diagram is initiated at 1.0 s in the simulation study. Figures 6–9 show the
simulation results for the motor operated with optimal PI gain obtained from PSO, hand
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FIG. 5. Mine hoist load diagram.

TABLE 1. Optimal gain (Kp and Ki) values obtained from PSO Algorithm

Region Torque
(Nm)

Speed
(rad/s)

Optimal gains
Kp Ki

Region 0 (initial) 0 250 25.2545 0.203491
Region 1(t1) 210 125 26.031 0.439
Region 2 (t2) 125 250 25 0.4868
Region 3 (t3) 20 125 26.381 0.3222

tuning, FL speed controller and hybrid controller. The figures show speed and developed
torque from top to bottom order.

4.1 Results of PI controller with hand tuning gains
The PI speed controller gain parameters of (10) are selected by trial and error basis by
observing their effects on the response of the drive. The values of Kp and Ki obtained from
the hand tuning are 25 and 0.4, respectively. The dynamic performances of the motor with
hand gain tuning of PI controller is shown in Figure 6.
At the starting point of simulation (0 s), motor speed is reached to 127.5 rad/s, whereas the
commanded speed is 125 rad/s. The torque response in this instant is raised up to 600Nm
with small oscillation before it settles. At 1.0 s, where the given load diagram is applied,
motor speed undershoots by nearly 5 rad/s due to the presence of heavy load. The torque
overshoots by 65Nm (31%) and settles with small oscillation. At 2.0 s, where Region 2 of the
load diagram is applied, motor speed overshoots up to 252.75 rad/s due to the load removal
and also due to the increase in command speed. Torque at this instant overshoots up to
350Nm, which is significantly higher than the commanded torque. The torque oscillates with
the value 5Nm, but the oscillation in the speed response is almost negligible. At Region 3
(3.5 s), both speed and torque responses undershoot due to the reductions of their desired
commands.
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FIG. 6. Results for PI controller with hand tuning: (a) speed and (b) torque.

4.2 Results of PI controller with optimal gains
As mentioned earlier, optimal gains of PI speed controller are obtained from the PSO algo-
rithm, which considers the variations in the load and speed requirements but do not considers
the parameter variations due to external disturbances such as temperature variation, supply
voltage, etc. in the motor and in the controllers. The results of present case are shown in
Figure 7. At starting (0 s), motor speed is nearly equal to commanded value and is settled at
0.2 s. Improved torque response is also obtained with optimal gain than hand tuning at this
instant. Starting torque overshoots up to 550 Nm at this case, whereas it reached to 600 Nm
at hand tuning. At 1 s, motor responses are more or less same as hand tuning. At Region 2,
the oscillation in the speed response is lower than hand tuning. At Region 3, speed response
slightly undershoots by 3 rad/s. It is noted that overall dynamic performances of the motor
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FIG. 7. Results of PI controller with PSO-based optimal gain tuning: (a) speed and (b)
torque.

when operated at PI controller with optimal gains is better than the hand tuning and the
steady-state error of speed response is zero.

4.3 Results of FL speed controller
The simulation results of speed and torque responses of the motor, which operate with FL
speed controller are shown in Figure 8. For all the regions, there is no speed overshoot
and ripples are negligible (main advantageous of FL controller), but it offers more settling
time and steady-state speed error (disadvantageous of this controller), shown in Figure 8a.
Steady-state speed errors are 1.25, 0.75 and 1.25 rad/s at the regions 1, 2 and 3, respectively.
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FIG. 8. Results of Fuzzy speed controller: (a) speed and (b) torque.

Overshoot and undershoot occurred in the torque response but are still better than PI
controller with and without optimal tuning of gains.

4.4 Results of hybrid speed controller based on fuzzy pre-compensation
The results of hybrid speed controller (HC) are shown in Figure 9. At starting of motor,
speed response has no overshoot and settles faster in comparison with FL controller. It is
also noted that there is no steady-state error in the speed response throughout the operation
when hybrid controller is activated. Furthermore, no oscillation in the torque response before
it finally settles (shown in Figure 9a), whereas oscillation occurred at PI controller with hand
tuning. At 1 s, speed undershoots just by 1 rad/s whereas, for PI controller this value was
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FIG. 9. Results of HC: (a) speed and (b) torque.

5 rad/s. Good Torque response is obtained with HC controller at this instant. In regions 2
and 3, speed response is better than PI and FL controllers. There is a negligible ripple in
speed response at HC in comparison with PI and FL controllers

5 Conclusions

This article presented PSO-based optimal gain tuning of PI speed controller in an IM drive
(30 hp) for a mine hoist load diagram. IM performance was checked with the optimal gains
through the simulation studies in MATLAB/SIMULINK environment. Results were com-
pared with hand tuning (fixed gains) and FL speed controller. Hybridization of PI and FL
controllers was done and used as a single controller by extracting the advantages present
in PI (zero steady-state error) and FL (negligible overshoot and undershoot) controllers.
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From the simulation studies, hybrid controller produced better performances in terms of
rise time, overshoot, undershoot and settling time. A brief description of PSO algorithm
and the definition of the problem were also given.
For practical implementation, the values of PI gains obtained from PSO at different speed
and torque commands can be stored in the memory of a digital signal processor and used
to operate the motor with optimal gains according to desired speed and torque. Unlike con-
ventional fixed gain PI controller, tuning of PI gains using PSO is insensitive to step change
of speed command and is preferred for the normal operation of the drive. Furthermore, on-
line tuning is highly recommended to maintain good stability of the drive during parameter
variations in the motor and in the controllers of the drive.
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[4] Á. Herrero, E. Corchado, M. A. Pellicer, and A. Abraham. MOVIH-IDS: a mobile
visualization hybrid intrusion detection system. Neurocomputing, 72, 2775–2784, 2009.

[5] A. Herrero, E. Corchado, L. Saiz, and A. Abraham. DIPIP: a Neural Knowledge Man-
agement Model Framework for Decision Support, Computational Intelligence, vol. 26,
pp. 26–56, Blackwell Publishing, 2010.

[6] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the IEEE
International Conference on Neural Networks, vol. IV, pp. 1942–1948. IEEE Service
Center, 1995.

[7] A. Khosla, S. Kumar, and K. R. Ghosh. A Comparison of Computational Efforts
between Particle Swarm Optimization and Genetic Algorithm for Identification of Fuzzy
Models. In Annual Meeting of the North American Fuzzy Information Processing Soci-
ety, pp. 245–250, 2007.

[8] J.-H. Kim, K.-C. Kim, and E. K. P. Chong. Fuzzy pre-compensated PID controllers’,
IEEE Transactions on Control System, 2, 406–411, 1994.

[9] R. Krishnan. Electric motor drives - Modeling, Analysis, and Control. Prentice Hall of
India publication, 2003.

[10] S.-W. Lee, M.-J. Jeong, B.-I. Jang, C.-H. Yoo, S.-G. Kim, and Y.-S. Park. Fuzzy pre-
compensated PI controller for a variable capacity heat pump. In Proceedings of the
IEEE Conference on Control Applications, pp. 953–957, 1998.

[11] H. Liu, A. Abraham, and M. Clerc. Chaotic dynamic characteristics in swarm intelli-
gence. Applied Soft Computing Journal, 7, 1019–1026, 2007.

[12] H. Liu, A. Abraham, and W. Zhang. A fuzzy adaptive turbulent particle swarm opti-
mization. International Journal of Innovative Computing and Applications, 1, 39–47,
2007.

[13] K. V. Naresh. Investigation of SVM-PWM based Induction Motor Drives. M Tech Dis-
sertation, Indian Institute of Technology Roorkee, 2007.

[14] M. Pant, R. Thangaraj, and A. Abraham. Optimal tuning of pi speed controller using
nature inspired heuristics. In Proceeedings of the Eighth International Conference on

 by on July 14, 2010 
http://jigpal.oxfordjournals.org

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org


[13:05 8/7/2010 jzq031.tex] Paper Size: a4 paper Job: JIGPAL Page: 14 1–14

14 Optimal gain tuning using particle swarm optimization

Intelligent Systems Design and Applications, pp. 420–425. IEEE Computer Society
Press, 2008.

[15] B. Singh and G. Choudhuri. Fuzzy logic based speed controllers for vector controlled
induction motor drive. IETE Journal of Research, 48, 441–447, 2002.

[16] C. Thanga Raj, S. P. Stivastava, and P. Agarwal. Particle swarm and fuzzy logic based
optimal energy control of induction motor for a mine hoist load diagram. IAENG Inter-
national Journal of Computer Science, 36, 17–25, 2009.

[17] O. Uysal1 and S. Bulkan. Comparison of genetic algorithm and particle swarm opti-
mization for bicriteria permutation flowshop scheduling problem. International Journal
of Computational Intelligence Research, 4, 159–175, 2008.

[18] J. Vesterstrom and R. Thomsen. A comparative study of differential evolution, particle
swarm optimization, and evolutionary algorithms on numerical benchmark problems. In
Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1980–1987, 2004.

Received 19 July 2009

Appendix A

A.1 Pseudo code of PSO algorithm used in this study
Step1: Initialization.
For each particle i in the population:
Step1.1: Initialize X [i] with uniform distribution.
Step1.2: Initialize V [i] randomly.
Step1.3: Evaluate the objective function of X [i], and assigned the value to fitness[i].
Step1.4: Initialize Pbest [i] with a copy of X [i].
Step1.5: Initialize Pbest_fitness[i] with a copy of fitness[i].
Step1.6: Initialize Pgbest with the index of the particle with the least fitness.
Step2: Repeat until stopping criterion is reached:
For each particle i:
Step 2.1: Update V [i] and X [i] according to (1) and (2).
Step2.2: Evaluate fitness[i].
Step2.3: If fitness[i] < Pbest_fitness[i] then Pbest [i] = X [i], Pbest_fitness[i] = fitness[i].
Step2.4: Update Pgbest by the particle with current least fitness among the population.
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