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Abstract

Packing and layout problems have wide applications in engineering prac-
tice. However, they belong to NP (non-deterministic polynomial)-Complete
problems. In this paper, we introduce human intelligence into the computa-
tional intelligent algorithms, namely particle swarm optimisation (PSO) and
immune algorithms (IA). A novel human-computer cooperative PSO-based
immune algorithm (HCPSO-IA) is proposed, in which the initial population
consists of the initial artificial individuals supplied by human and the ini-
tial algorithm individuals are generated by a chaotic strategy. Some new
artificial individuals are introduced to replace the inferior individuals of the
population. HCPSO-IA benefits by giving free rein to the talents of designers
and computers and contributes to solving complex layout design problems.
The experimental results illustrate that the proposed algorithm is feasible
and effective.
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1. Introduction

Packing and layout problems [1, 2] deals with how to put objects into a
limited space reasonably under given constraints. These constraints include
the requirements for equilibrium, stability, connectivity and adjacent states.
Some methods [1, 3] are presented, such as mathematical programming and
criterion methods, heuristic algorithms, graph theory, expert systems, swarm
intelligence and natural laws but it is still difficult to solve the problems
satisfactorily.

Unlike those traditional methods, the swarm intelligent algorithms illus-
trated more superior performances in recent years [4, 5, 6, 7]. They are partic-
ularly fit for solving medium or large-scale problems [8] but for the complex
packing and layout problems, there exist some defects, such as premature
convergence and slow convergence rate. In this paper, we introduce some
novel strategies into our hybrid PSO-based immune algorithm (PSO-IA).
In addition, a intelligent machine or an algorithm is powerful in numerical
calculation and repetitive operations but lack of experience and inspiration,
which are just the strong points of human beings. There are very differences
in nature between computer and human, which also mean that they should
deeply depend on each other when solving practical complex problems. The
idea of man-machine synergy (or called as human-computer cooperation) was
originated by Lenat and Feigenbaum [9]. It is regarded as a promising ap-
proach to solve complex engineering problems [10, 11]. According to this
idea, taking into account the intractable nature of the packing and layout
problems and their importance, we further propose a novel human-computer
cooperative PSO-based immune algorithm (HCPSO-IA).

2. Hybrid PSO-based Immune Algorithm

In this Section, we present a hybrid algorithm PSO-IA with some im-
provement strategies, which include immunity principle, chaotic initializa-
tion, new PSO update operators, arithmetic-progression rank-based selection
with pressure as well as a multi-subpopulation evolution based on PGA [12].
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2.1. Arithmetic-progression rank-based selection with pressure

In genetic algorithms, rank-based selection model focuses on the numeri-
cal size relations rather than the specific numerical differences among individ-
ual fitness values. A probability assignment table has to be preset. But there
is no deterministic rule for design of the table. It is difficult to make the s-
election probabilities of individuals adaptively changed along with evolution
process [13, 14]. We introduce arithmetic-progression rank-based selection
with pressure based on the mathematical concept of interpolation method.

There is one independent parameter in this operator, selection pressure α.
It denotes the ratio of the maximal individual selection probability Pmax to
the minimal one Pmin within a generation, i.e. Pmax = αPmin. It numerically
shows the superiority that the better individuals are reproduced into the
next generation during selection operation and it is changeable along with
algorithm evolution. In the early stage, lesser α can maintain population
diversity and prevent the algorithm from premature convergence, while in
the late stage, greater α can benefit accelerating convergence. Let α = f(K),
K denotes the generation number. Assume that αmax and αmin denote the
maximum and minimum of selection pressure respectively, then

α =
(K − 1)(αmax − αmin)

Kmax − 1
+ αmin (1)

where Kmax is the maximal generation number set in algorithm. And our
numerical experiments and statistical analyses show that αmax and αmin may
be chosen in the interval [6, 15] and [1.5, 5] respectively [15].

To calculate the selection probability of every individual, we arrange all
the individuals within a population in descending order based on their fitness
values. Let Indi represent the ith individual within a population as well as
Fi and Pi represent its fitness and selection probability respectively. There
exist Indi (i = 1, 2, · · · ,M) and Fi > Fi+1 (i = 1, 2, , · · · ,M − 1). M
is the population size. Suppose that the selection probability values of all
the individuals form an arithmetic progression. Its first term and last term
are P1 = Pmax = αPmin and PM = Pmin respectively. Obviously, the sum
of all the individual selection probability is 1, i.e. subtotal of arithmetic
progression as follows:

SM = [(P1 + PM) ·M ]/2

= [(αPM + PM) ·M ]/2

= 1

(2)
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We get
PM = 2/[M(1 + α)] (3)

Therefore we obtain the common difference of the arithmetic progression

∆ = (P1 − PM)/(M − 1)

= [PM(α− 1)]/(M − 1)

= [2(α− 1)]/[M(1 + α)(M − 1)]

(4)

And there exists

Pi = P1 − (i− 1)∆

= αPM − (i− 1)∆
(5)

Substituting Equs. (3) and (4) into Equ. (5), it is easy to find that

Pi =
2α · (M − i) + 2(i− 1)

M · (α + 1)(M − 1)
i = 1, 2, · · · ,M (6)

In the process of selection, we firstly reproduce the best individual of cur-
rent generation and have its copy in the next generation directly based on
the elitist model, and then figure out selection probabilities of all individuals
according to Equ. (6) and finally generate the remaining M − 1 individuals
of the next generation by fitness proportional model. Compared with tradi-
tional rank-based selection, the advantage of proposed selection operator is
that it can conveniently change the selection probabilities of individuals by
changing selection pressure.

2.2. Antibody concentration and immune selection

Immunity-based algorithms that originated in 1990’s have many good
characteristics [16]. They can embody immune memory, extraction and in-
oculating efficient antibodies as well as antibody inhibition and promotion
mechanism in the biological immune systems. So the evolutionary algorithms
based on immunity [17, 18] can effectively prevent premature, accelerate con-
vergence rate. In this section, we introduce immune principle into parallel
genetic algorithms and put forward some improvements as follows:

• We adopt the simple and easy Euclidean distance to calculate affini-
ties between antibodies (i.e. individuals) for convenient to engineering
design.
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• We present correction formula for calculating individual concentration
and the immune selection operator based on above proposed arithmetic-
progression rank-based selection with pressure.

• We propose the individual migration strategy according to the immune
memory mechanism between subpopulations in hybrid algorithm (For
details, see Section 2.4).

2.2.1. Antibody affinity and antibody concentration

Here Antibodies are exactly individuals. They have the same concept and
all represent solutions of a given problem. Antibody affinity ayvw defined as
follows indicates similar extent between antibody v and antibody w.

ayvw = 1/[1 +H(2)] (7)

The range of ayvw is within (0, 1]. If the value ayvw is higher then the
antibody v is more similar with antibody w. At present, H(2) in last for-
mula is mostly calculated by average information entropy formula based on
antibody v and w. In fact, as above stated, antibody affinity denotes similar
extent between antibodies. In other words, H(2) represents the distance be-
tween two antibodies. It can be calculated by average information entropy
and also can be calculated by other methods, if two conditions are satisfied.
One is H(2) ≥ 0, and H(2) = 0 indicates that the genes of two antibodies
are exactly the same. The other is that greater differences between genes of
two antibodies can lead to greater value of H(2). In order to simplify the
calculation and be easy for real-number coding and engineering realization,
we adopt Euclidean distance to calculate affinities.

Let antibody v = (v1, v2, . . . , vn) and antibody w = (w1, w2, . . . , wn),
then

H(2) =

√√√√ n∑
i=1

(vi − wi)2 (8)

If M denotes the population size, concentration cv of antibody v in its pop-
ulation is usually defined as follows presently.

cv =
1

M

M∑
w=1

ayvw (9)

Obviously there exists cv ∈ (0, 1].
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In order to avoid oscillation during the later period of proposed algorithm
and facilitates algorithm convergence, antibody concentration cv has to tend
to 1 ultimately along with increase in the value of generation number K.
Therefore, we present a correction for Equ. (8) as follows:

Cv = (
1

M

M∑
w=1

ayvw)
(1− K

Kmax
)β (10)

where β is a system parameter and usually set β = 0.5.
Apparently antibody affinity and concentration can be regarded as a kind

of representation of population diversity in immune algorithms. And the
above relevant formulas are given for the sake of convenience of engineering
application.

2.2.2. Immune selection operator

The procedure for immune selection of the proposed algorithm can be
described as follows:

• Calculate the fitness value and concentration of every antibody (indi-
vidual) in the population, i.e. Fv and cv, v = 1, 2, . . . ,M ;

• Calculate the adjusted fitness F ′
v of every antibody in the population

and there exist F ′
v = Fv/cv, v = 1, 2, . . . ,M ;

• Generate the next population based on adjusted fitness values by above-
stated arithmetic-progression rank-based selection with pressure.

Compared with the traditional selection operators, the above immune
selection can reflect self regulation function of antibody inhibition and pro-
motion in immune systems. Namely the antibodies with greater fitness values
and lower concentration will be promoted and their survival probabilities be-
come larger. On the contrary, the antibodies with lower fitness values and
higher concentration will be inhibited and their survival probabilities become
smaller. Consequently proposed immune selection can effectively maintain
population diversity and prevent proposed algorithm from premature con-
vergence.
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2.3. Improved adaptive crossover and mutation

To prevent genetic algorithms from premature convergence effectively as
well as protect superior individuals from untimely destruction, the concep-
t of adaptive crossover and mutation is proposed by Srinivas and Patnaik
[19]. According to these operators, crossover and mutation rate of the best
individual among a population are both zero. It may lead to rather slow
evolution in the early stage. To avoid its occurrence, it’s better to let the
individuals possess due crossover and mutation rates, whose fitness values
are equal or approximate to the maximal fitness. Therefore, our crossover Pc

and mutation rates Pm are presented as follows:

Pc =

{
k1exp[

(Fmax−F ′)
Fmax−Favg

(lnk3 − lnk1)] F ′ ≥ Favg

k3 F ′ < Favg

(11)

Pm =

{
k2exp[

(Fmax−F )
Fmax−Favg

(lnk4 − lnk2)] F ≥ Favg

k4 F < Favg

(12)

where Fmax and Favg denote the maximal and average fitness of current pop-
ulation. F ′ denotes the greater fitness of the two individuals that take part
in crossover operation. F denotes the fitness of the individual that take
part in mutation operation. k1, k2, k3, k4 are constants. And there exist
0 < k1, k2, k3, k4 ≤ 1.0, k1 < k3, k2 < k4.

2.4. Multi-subpopulation evolution

Simulating the varied and colorful biological communities in nature, we
classify all the subpopulations of proposed algorithm into four classes (named
Class A, B, C and D) according to their crossover and mutation rates (Pc

and Pm). To be simple and convenient, we suppose that there is only one
subpopulation within every class. Their parametric features are shown in
Table 1.

We can see that the fitness values of initial individuals of ClassA subpopu-
lation are the minimal among those of subpopulations of the four classes. But
this subpopulation has the highest Pc and Pm, so it is easier for it to explore
the new parts of the feasible field and enhance the possibility of discovering
global optima. As well as, it can guard against premature convergence. The
initial individuals of Class C subpopulation are with relatively greater fitness
values. Because this subpopulation has relatively smaller Pc and Pm, it is
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Table 1: Parametric features of four classes of subpopulations

Subpopulation Class A Class B Class C Class D

Crossover rate
k1 = 0.8 k1 = 0.5 k1 = 0.2 k1 = 0.1
k3 = 1.0 k3 = 0.8 k3 = 0.5 k3 = 0.2

Mutation rate
k2 = 0.3 k2 = 0.2 k2 = 0.1 k2 = 0.05
k4 = 0.4 k4 = 0.3 k4 = 0.2 k4 = 0.1

Initial fitness Minimal Medium Greater Maximal

easier for it to keep the stability of individuals. The function of Class C sub-
population is mainly to consolidate local search. Class B subpopulation is a
transitional subpopulation. Its Pc and Pm, as well as the initial fitness values
are between those of subpopulations of the above-stated two classes. Class
D subpopulation is also called memory subpopulation for it corresponds to
memory cells in immune systems. It is made up of the initial individuals
with the maximal fitness values among those of subpopulations of the four
classes. In the process of evolution, this subpopulation saves the superior
individuals obtained by other three subpopulations. At the same time, Class
D subpopulation is also evolving itself. But its Pc and Pm are the lowest.
The function of Class D subpopulation is to simulate the immune memory
function and keep the stability and diversity of the superior individuals. Af-
ter chaos initialization, the algorithm arranges all the generated individuals
according to their fitness values. The initial individuals with the maximal
fitness are allocated to Class D subpopulation; the initial individuals with
relatively greater fitness are allocated to Class C subpopulation; the initial
individuals with the minimal fitness are allocated to Class A subpopulation;
the rest of initial individuals are allocated to Class B subpopulation.

The individual migration strategy based on immune memory between
subpopulations of the hybrid algorithm is as follows. At intervals of given
migration cycle, the algorithm copies the current best individuals in Class
A, B and C subpopulations and remembers (saves) them into Class D sub-
population, then update this memory subpopulation (eliminate the inferior
individuals from it) and keep the same subpopulation size. Meanwhile, sim-
ulating inoculation, the algorithm selects some individuals from the memory
subpopulation and makes them migrate to Class A, B and C subpopulations
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respectively. The migration individuals will replace the inferior individual-
s of the three subpopulations respectively as well. This migration strategy
can accelerate the convergence rate of the algorithm. In addition, we set
a generation control parameter, denoted by Km. When generation number
K is multiples of Km, the algorithm merges all the subpopulations together
and arrange all the individuals according to their fitness values. Then it re-
allocates individuals to every subpopulation respectively according to their
fitness values.

2.5. PSO update operators

2.5.1. Basic theory of particle swarm optimization

Kennedy and Eberhart [20] presented the idea of particle swarm optimiza-
tion (PSO), in which each particle represents a potential solution. There are
mainly two forms of PSO at present, i.e. global version and local version.

With regard to global version of PSO, in the n-dimensional search space,
M particles are assumed to consist of a population. The position and velocity
vector of the ith particle are denoted by Xi = (xi1, xi2, . . . , xin)

T and Vi =
(vi1, vi2, . . . , vin)

T respectively. Then its velocity and position are updated
according to the following equations.

vk+1
id = w · vkid + ci · rand() · (pkid − xk

id) + cg · rand() · (pkgd − xk
id) (13)

xk+1
id = xk

id + vk+1
id (14)

where i = 1, 2, . . . ,M ; d = 1, 2, . . . , n; k and k + 1 are iterative numbers.
pi = (pi1, pi2, . . . , pin)

T is the best previous position that ith particle searched
so far and pg = (pg1, pg2, . . . , pgn)

T is the best previous position for whole
particle swarm. rand() denotes a uniform random number between 0 and 1.
Acceleration coefficients ci and cg are positive constants (usually ci = cg =
2.0) [21]. w is inertia weight and it showed that w decreases gradually along
with iteration can enhance entire algorithm performance effectively [22]. It
is usually set limitation to a particle velocity. Without loss of generality,
assume that relevant following intervals are symmetrical. There exists vkid ∈
[−vd,max,+vd,max]. vd,max (d = 1, 2, . . . , n) determine the resolution with
which regions between present position and target position are searched.

In local version of PSO, particle i keeps track of not only the best pre-
vious position of itself, but also the best position pli = (pli,1, pli,2, . . . , pli,n)

T

attained by its local neighbor particles rather than that of the whole particle
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swarm. Typically, the circle-topology neighborhood model is adopted [23].
Its velocity update equation is

vk+1
id = w · vkid + ci · rand() · (pkid − xk

id) + cl · rand() · (pkli,d − xk
id) (15)

where cl is also an acceleration coefficient, usually set ci = cl = 2.0. And
its position update equation is same as that of the global version of PSO.
Compared with global version of PSO, local version of PSO has a relatively
slower convergence rate but it is not easy to be stuck to local optima.

2.5.2. Operator Realization

In PSO-IA, different modes of PSO update operators are introduced into
different subpopulations. Global mode PSO update operator is introduced
into Class D subpopulation in order to accelerate the convergence of its indi-
viduals to global optima. Average mode PSO update operator is introduced
into Class C subpopulation so as to help its individuals to consolidate local
search around discovered superior solutions. Random mode and synthesis
mode PSO update operator are introduced into Class A and B subpopu-
lation respectively. The former matches the function of exploring solution
space of Class A subpopulation and helps to prevent algorithm from prema-
ture convergence. The latter matches the function of Class B subpopulation
and gives consideration to the balance of exploration and exploitation in
solution space.

Every mode PSO update operator has the same position update equation,
see Equation (14). But their velocity update equations are different. Global
mode update operator is on the basis of global version PSO completely. Syn-
thesis mode update operator integrates global version PSO with local version
PSO together. In its individual velocity update equation, see Equation (16),
three best positions are chased, i.e. the best position an individual visited
so far, the best position attained by its local neighbor particles and the best
position obtained so far by the whole population.

vk+1
id =w · vkid + ci · rand() · (pkid − xk

id)

+ cg · rand() · (pkgd − xk
id) + cl · rand() · (pkli,d − xk

id)
(16)

According to relevant reference [24, 25], we set ci = cg = 1.5 and cl = 1.1 in
synthesis mode update operator.

In random mode update operator, the neighborhood Ni of particle i is
composed of s particles. Apart from particle i itself, the other s − 1 parti-
cles are randomly selected from the whole population. In this mode update
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operator, particle i keeps track of the best previous position of itself and
the best position attained within its random neighborhood Ni. In the broad
sense, random mode PSO can be regarded as a special kind of local version
PSO. Merely its topology structure of neighborhood is dynamic and stochas-
tic. Therefore it helps to explore solution space thoroughly and prevent from
premature convergence. We usually set s = int(0.1 ∼ 0.15M) and int(·)
denotes round-off function.

As for average mode PSO update operator, we first arrange the best
position of every particle pi (i = 1, 2, . . . ,M) in descending order according
to their corresponding fitness, then select the front u best positions (here
denoted by pgj = (pgj,1, pgj,2, . . . , pgj,n)

T, j = 1, 2, . . . , u), and change velocity
of particle i based on its own best previous position pi and average of pgj (j =
1, 2, . . . , u), i.e. P̄g = (P̄g1, P̄g2, . . . , P̄gn)

T , as follows.

vk+1
id = w · vkid + ci · rand() · (pkid − xk

id) + ca · rand() · (p̄kgd − xk
id) (17)

p̄kgd =
1

u
·

u∑
j=1

pgj,d (18)

Similarly ca is an acceleration coefficient, we set ci = ca = 2.0 here. Usually
1 ≤ u ≤ int(0.15M) and this mode PSO will reduce to global version PSO
if u = 1. According to characteristics of different subpopulations, we set the
range of w and Vmax of every mode of update operator in Table 2. Based
on adaptation idea [24], we let w and k (coefficient of maximal velocity) de-
crease linearly along with evolution from their maximal values to the minimal
values.

2.6. Hybrid strategy
To further improve the local search ability of the algorithm, we hybridize

another complex method with the proposed algorithm. Complex method [26]
possesses relatively fast local convergence rate and doesn’t involve derivative
information. For computational efficiency, the hybrid algorithm have to give
full play to the global search ability of immune algorithm in the early stage,
while to the local search ability of complex method in the late stage. There-
fore in PSO-IA, we set parameter Ks, randomly select Ns individuals to form
initial complex shape and search Cs turns by complex method at intervals
of Ks generations. To enhance the local search ability of PSO-IA in the late
stage and accelerate convergence rate, Ns and Cs are set in direct proportion
to generation number in our algorithm.
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Table 2: Relevant settings of every mode of PSO update operator for all classes of sub-
populations

Update Random Synthesis Average Global
operator mode mode mode mode

Subpopulation Class A Class B Class C Class D

Inertia weight w
wmax = 1.5 wmax = 1.1 wmax = 0.7 wmax = 0.6
wmin = 1.0 wmin = 0.6 wmin = 0.4 wmin = 0.3

Mutation rate
kmax = 1.0 kmax = 0.7 kmax = 0.5 kmax = 0.3
kmin = 0.7 kmin = 0.4 kmin = 0.2 kmin = 0.1

2.7. The procedure of proposed PSO-IA

Flow chart of the proposed hybrid PSO-based immune algorithm (PSO-
IA) is shown in Figure 1.

3. Human-computer Cooperative PSO-based Immune Algorithm

According to the idea of human-computer cooperation, we further intro-
duce human intelligence into the algorithm and propose a human-computer
cooperative PSO-based immune algorithm (HCPSO-IA) based on above-
stated PSO-IA. We describe relevant definitions and operation of HCPSO-IA
as follows.

Definition 1. Artificial individuals : Swarm-based algorithms operate
the population of individuals. Each individual is a representation of a candi-
date solution to the problems and it is usually a binary string or real number
string. An artificial individual in this paper is an individual represents a
candidate solution given by designer according to his design experience, a
reference template or other available sources (e.g. a sample database).

Definition 2. Algorithm individuals : Without the participation of hu-
man, the individuals generated by algorithms are called algorithm individual-
s. It is obviously that the initial individuals obtained by randomized or chaos
policy are algorithm individuals. Being in the population and once operat-
ed by algorithmic operators, an artificial individual becomes an algorithm
individual immediately.

The basic idea of HCPSO-IA is to take artificial individuals as a part of
initial population, apply algorithmic operators to the population consisting
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Figure 1: Flow chart of the proposed hybrid PSO-based immune algorithm (PSO-IA)
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of artificial individuals and algorithm individuals and introduce new artificial
individuals into the population timely during the evolution process.

3.1. Initialization and fitness function

The initial population of HCPSO-IA contains initial artificial individuals
provided by designers or sample database and the initial algorithm individ-
uals generated by chaotic initialization method. It deserves to be mentioned
that the number of initial artificial individuals N

(0)
m should be appropriate.

Too many and too few initial artificial individuals can affect the function of
the algorithm and human respectively. Based on the trial computation and
corresponding result analyses by the mathematical statistics method [15], we

suggest that the number of N
(0)
m should be 0.25 ∼ 0.35M , M is the popula-

tion size. After initialization, the algorithm allocates all individuals to four
subpopulations according to their fitness values.

Engineering packing and layout design problems are almost complex con-
strained optimization problems. In this paper, a penalty term is introduced
to transform the objective function with constraints into a non-constrained
objective function. So the fitness function is further derived from it by ex-
ponential scaling as follows.

F (X) =exp(f(X) +
l∑

i=1

λigi(X)ui(gi))

ui(gi) =

{
0 if gi satisfies constraint, i.e. gi(X) ≤ 0,

−1 Otherwise.

(19)

where F (X) and f(X) are fitness and objective function respectively; gi(X) (i =
1, 2, . . . , l) are constraint functions and λi (i = 1, 2, . . . , l) are positive penalty
factors; l is the number of constraints.

3.2. Human-computer cooperation

We apply above proposed PSO-IA to evolve the population. When gen-
eration number K is multiples of KI (KI is a given positive integer) or the
algorithm is stuck into local optima, new schemes are designed artificially
by referring to the superior individuals in population and considering engi-
neering factors in practice. For layout design problems, it is generally can
display their layout patterns (or reduced layout patterns) corresponding to
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design schemes on output devices (e.g. a computer monitor) by visualization
technology. Therefore, it is relatively easy for designers to construct new
design schemes. They can directly drag the objects to their ideal positions
on computer monitors interactively. Then the new design schemes are en-
coded and added to the population. The bad individuals can be replaced by
the new artificial individuals. Several copies of an artificial individual are
added to the population at the same time to ensure that it really works in
the following generations. The number of new artificial individuals normally
increases with the evolution process so as to take full advantage of the pow-
erful global search ability of PSO-IA in the early stage. Moreover, the new
artificial individuals are quite different from the current superior individuals
in the early stage in order to contribute to extensively exploring the feasible
field of the problem and keeping PSO-IA from premature convergence. While
some new artificial individuals are similar to the superior individuals in the
late stage in order to enforce the local search around superior individuals and
accelerate convergence rate.

Assume that the number of added artificial individuals linearly increases
along with the algorithm run. In the late stage of the cooperative algorithm,
the added number is a constant and after rounding and taking the actual
knowledge level of designers into consideration, we have:

N (k)
m =

{
int{1.25λM [(b−a)K+acKmax−b]

cKmax−1
− 2.5λ+ 2} 1 ≤ K ≤ cKmax

int{1.25λ(bM − 2) + 2} cKmax ≤ K ≤ Kmax

(20)

where N
(k)
m is the number of artificial individuals advised to be added to the

population in Kth generation, and int(·) denotes round-off function. Kmax

is the maximal generation number. M is the population size. a, b and
c are control parameters and usually a = 0.05 ∼ 0.10, b = 0.35 ∼ 0.45,
c = 0.80 ∼ 0.95. Parameter λ ∈ [0, 1] represents knowledge level of the
designer. The more λ is close to 1, the higher knowledge level the designer
has. λ can be evaluated by fuzzy synthetic evaluation [27].

It should be noted that at every interaction time, the above-mentioned
adding artificial individuals and replacing algorithm individuals can be op-
erated only within one subpopulation or several subpopulations at the same
time. It depends on the actual situation and designers’ experience. The re-
lationship between human and algorithmic operations in our HCPSO-IA can
be illustrated as Figure 2, where the real-time monitoring of human includes
the adjustment of relevant parameters and other necessary control. The basic
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Figure 2: Relationship between human and algorithmic operations

procedure of HCPSO-IA is illustrated in Algorithm 1.

4. Numerical Experiments

4.1. Problem 1

The engineering background of this problem P1 is the packing and layout
design of printed circuit boards (PCB) and plant equipments. Assume that
there are n objects named A1, A2, . . . , An and the weight between Ai and
Aj is wij, i, j = 1, 2, . . . , n. Try to locate each object such that the value
of expression S + λwQ of a layout scheme is as small as possible and the
constraints of no interference between any two objects are satisfied. Here S
is the area of enveloping rectangle of a layout scheme. λw is a weight factor
and Q is the sum of the products of dij multiplied by wij, i.e.

C =
n−1∑
i=1

n∑
j=i+1

dijwij (21)

where dij is the distance between object Ai and Aj. wij may possess different
meanings in different engineering problems. For example, in the packing

16



Algorithm 1 Human-computer Cooperative PSO-based Immune Algorithm

1: Initialize population. Set K = 0. Let S∗ be the best individual of initial
population. Here S∗ denotes the best individual up to now. Ensure
that the whole population consists of artificial individuals and algorithm
individuals and their numbers are N

(K)
m and N

(K)
a respectively in the Kth

generation. Set parameter KI represents the interaction cycle.
2: Apply the proposed PSO-IA to the population and evolve it to the next

generation. Increase K by 1 .
3: Evaluate each individual. If the best individual of current generation is

better than S∗, then assign it to S∗. And if S∗ satisfies the end criterion,
then go to Step 7.

4: If K is not multiples of KI or there is no break request from designers,
go to Step 2.

5: Design N
(K)
m artificial individuals by referring to S∗ and the superior

individuals of current generation, and taking engineering factors into
consideration.

6: Replace some algorithm individuals by new artificial individuals and en-
sure population size is unchanged, go to Step 2.

7: Output the optimal solution .
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and layout design problems of PCB, wij denotes the connectivity between
integrated devices. While in the packing and layout design problems of plant
equipments, wij denotes the adjacent requirement between equipments.

Suppose that (xi, yi) is the coordinates of the center of the object Ai. The
mathematical model is given by

Find X = (xi, yi)
T , i ∈ {1, 2, . . . , n}

minf(X) = S + λwQ

s.t. intAi ∩ intAj = ∅, i ̸= j, i, j ∈ {1, 2, . . . , n}
(22)

where intAi presents the interior of object Ai as above.
15 circular objects are contained in P1 [25]. Let λw = 1. The radii of

objects are r1 = r3 = r10 = 12mm, r2 = r4 = 3mm, r5 = r13 = r14 = 9mm,
r6 = r12 = r15 = 10mm, r7 = 7mm, r8 = 8mm, r9 = 4mm, r11 = 6mm. The
weight matrix is

W =



0 0 0 98 98 0 81 0 92 93 45 61 99 84 27
0 0 34 0 0 0 93 44 0 0 33 60 0 0 56
0 34 0 0 0 0 0 0 0 85 0 65 39 0 50
98 0 0 0 91 50 5 24 73 0 4 0 0 31 23
98 0 0 91 0 37 0 16 78 95 0 0 73 32 0
0 0 0 50 37 0 0 35 0 31 0 0 0 48 0
81 93 0 5 0 0 0 94 33 34 26 61 0 87 87
0 44 0 24 16 35 94 0 91 0 0 0 59 39 0
92 0 0 73 78 0 33 91 0 0 30 0 0 0 0
93 0 85 0 95 31 34 0 0 0 0 0 0 0 0
45 33 0 4 0 0 26 0 30 0 0 0 21 35 2
61 60 65 0 0 0 61 0 0 0 0 0 56 0 43
99 0 39 0 73 0 0 59 0 0 21 56 0 1 0
84 0 0 31 32 48 87 39 0 0 35 0 1 0 0
27 56 50 23 0 0 87 0 0 0 2 43 0 0 0



(23)

We adopt PGA, PSO-IA and HCPSO-IA to solve the problems respective-
ly. Here the widely used island model, i.e. coarse-grained PGA is employed.
To compare the performance of the algorithms objectively, every algorith-
m we adopt in this paper possesses four subpopulations. And any relevant
contents of the three algorithms, such as population size, encoding scheme,
fitness function and migration cycle, that may be identical are selected as the
same. In the aspect of algorithm initialization, stochastic initialization and
chaos initialization are relatively used in PGA and PSO-IA. And as above
stated, the initial population of HCPSO-IA contains artificial individuals
provided by designers as well as algorithm individuals generated by chaos
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Table 3: Comparison of obtained results of the best layouts by three algorithms of P1

Algorithms S/mm2 Q t1/s t2/s t/s

PGA 5996.46 89779.16 29.79 29.79
PSO-IA 5586.97 86861.74 30.82 30.82
HPSO-IA 5410.58 76169.97 16.26 18 34.26

initialization. In the aspect of algorithm operators, PSO-IA and HCPSO-IA
have same operators (such as adaptive crossover and mutation, PSO up-
date and immune selection), while proportional model selection, two-point
crossover and uniform mutation are used in PGA. The migration strategy of
PGA we adopted in this paper is as follows. At intervals of given migration
cycle, PGA copies several superior individuals of every subpopulation, sends
to another arbitrarily taken subpopulation and replaces the inferior individu-
als of the subpopulation. It is worth mentioning that the human intervention
is applied to help to overcome local minima traps, when we adopt HCPSO-
IA to solve two problems. That is to say, when designers consider that the
algorithm is stuck into local optima artificial individuals will be added into
the algorithm. All computation is performed on a PC with CPU at 2.1GHz
and RAM size of 2GB and non-interference requirements are guaranteed to
obtain optimal results.

All the three algorithms are run 20 times respectively. The best layouts
of P1 among 20 results are shown in Figure 3. The Comparison of obtained
results of the best layouts is given in Table 3. In this table, the time spent on
calculation and human-computer interaction is denoted as t1 and t2 respec-
tively, so the total cost of time is t = t1 + t2. The relevant symbols possess
the same meanings in the following tables of this paper.

As shown in Table 3, for the best layout by PGA, the area of envelop-
ing rectangle S, the parameter Q and computation time t are 5996.46mm2,
89799.16 and 29.79s. In the sense of best results, compared with PGA,
PSO-IA reduces S and Q by 6.83% and 3.27%, i.e. from 5996.46mm2 to
5586.97mm2 and from 89799.16 to 86861.74 respectively. HCPSO-IA further
reduces them by 9.77% and 15.16%, i.e. from 5996.46mm2 to 5410.58mm2

and from 89799.16 to 76169.97 respectively. When obtained S ≤ 5996.46mm2

and Q ≤ 89799.16, PSO-IA takes 21.15s and HCPSO-IA takes 24.48s (in-
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(a) Best layout by PGA (b) Best layout by PSO-IA

(c) Best layout by HCPSO-IA

Figure 3: The obtained best layout patterns of P1 by three algorithms
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Table 4: Comparison of average values of optimal results by three algorithms of P1

Algorithms S/mm2 Q K

PGA 6153.83 95739.06 705
PSO-IA 5778.69 87461.15 503
HPSO-IA 5547.53 78034.84 387

cluding 12s interaction time). Therefore compared with PGA, to reach the
same precision, PSO-IA and HCPSO-IA reduced the cost of time by 29.00%
and 17.82% respectively.

Table 4 lists relevant average values of obtained twenty optimal results of
P1 by three algorithms. K represents elapsed generation number for an op-
timal result. Compared with PGA, on an average, PSO-IA reduces the area
of enveloping rectangle S, the parameter Q and elapsed generation number
K by 6.10%, 8.65% and 28.65%, i.e. from 6153.83mm2 to 5778.69mm2, from
95739.06 to 87461.15 and from 705 to 503. HCPSO-IA further reduces them
by 9.85%, 18.49% and 45.11%, i.e. from 6153.83mm2 to 5547.53mm2, from
95739.06 to 78034.84 and from 705 to 387 respectively.

4.2. Problem 2

The engineering background of this problem P2 is the layout design of
satellite modules [28]. There are 12 rectangular objects and 8 circular objects
will be located on a bearing plate with radius R = 1800mm. Dimensions of
all the objects are given in Table 5, in which ai and bi are one half of the
longer and shorter edge for a rectangular object while ri is the radius for a
circular object, and mi denotes the mass of every object. The unit of ai, bi,
ri is mm, and mi is Kg. There are three rectangular objects (i.e. No. 18,
19 and 20 objects shown in Figure 4) that are fixed on the plate in advance.
The allowable value of static non-equilibrium is [δJ ] = 2.5Kg ·mm. Try to
locate each object such that these objects highly concentrate on the center
of the container and the constraints of no interference and static equilibrium
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Table 5: Dimensions and mass of objects to be located

No. ai bi ri mi No. ai bi ri mi

1 365 365 4.0 11 250 3.2
2 425 300 4.5 12 340 2.6
3 250 225 3.6 13 130 1.5
4 290 215 3.0 14 90 0.7
5 175 175 2.1 15 150 1.4
6 350 135 3.3 16 360 2.6
7 330 140 2.0 17 160 1.0
8 250 175 1.8 18 300 250 2.0
9 100 80 1.1 19 225 175 1.5
10 450 4.0 20 250 225 1.8

behavior are satisfied. The mathematical model of P2 is given as follows.

Find X = (xi, yi, αi)
T , i ∈ {1, 2, . . . , n}

min F (X) = R∗ = maxRi

s.t. intAi ∩ intAj = ∅, i ̸= j, i, j ∈ {1, 2, . . . , n}
maxRi ≤ R i = 1, 2, · · · , n

J =

√√√√( n∑
i=1

mixi

)
+
( n∑

i=1

miyi
)
≤ [δJ ]

(24)

where (xi, yi) is the coordinates of the centroid of the ith object (denoted by
Ai) and bearing angle αi is the orientation it is located in. For a rectangular
object, αi is the included angle between its long side and the positive semi-
axis x. It is defined to be positive by anticlockwise within the bound of [0, π].
In the case of circular objects, αi equals 0. Ri is the radius of enveloping
circle of object Ai. R∗ and J denote the radius of enveloping circle and the
value of static non-equilibrium of the entire layout scheme respectively. [δJ ]
represents the allowable value of J . int Ai presents the interior of object Ai.

We adopt PGA, PSO-IA and HCPSO-IA to solve P2 respectively. All
the three algorithms are run 20 times respectively. The best layouts of P2

among 20 results by them are shown in Figure 4. The comparison of the
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Table 6: Comparison of obtained results of the best layouts by three algorithms of P2

Algorithms R∗/mm J/Kg ·mm t1/s t2/s t/s

PGA 1703.57 1.277 182.29 182.29
PSO-IA 1666.27 0.310 201.47 201.47
HPSO-IA 1587.58 0.001 163.65 52 215.65

obtained results of the best layouts is given in Table 6, where R∗ and J
denote the radius of enveloping circle and the value of static non-equilibrium
of a layout scheme respectively. For the best layout by PGA, the radius of the
enveloping circle R∗, the value of static non-equilibrium J and computation
time t are 1703.57mm, 1.277Kg·mm and 182.29s. In the sense of best results,
compared with PGA, PSO-IA reduces R∗ and J by 2.19% and 75.72%, i.e.
from 1703.57mm to 1666.27mm and from 1.277Kg · mm to 0.310Kg · mm
respectively. HCPSO-IA further reduced them by 6.81% and 99.92%, i.e.
from 1703.57mm to 1587.58mm and from 1.277Kg · mm to 0.001Kg · mm
respectively. When obtained R∗ ≤ 1703.57mm and J ≤ 1.277Kg ·mm, PSO-
IA takes 145.06s and HCPSO-IA takes 138.72s (including 35s interaction
time). Therefore compared with PGA, to reach the same precision, PSO-IA
and HCPSO-IA reduced the cost of time by 20.42% and 23.90% respectively.

Table 7 lists relevant average values of obtained twenty optimal results
of P2 by the three algorithms. And it shows that compared with PGA,
on an average, PSO-IA reduces the radius of the enveloping circle R∗, the
value of static non-equilibrium J and elapsed generation numberK by 3.77%,
63.59% and 25.70%, i.e. from 1779.75mm to 1712.61mm, from 2.153Kg ·mm
to 0.784Kg · mm and from 1327 to 986. HCPSO-IA further reduces them
by 7.94%, 99.58% and 51.85%, i.e. from 1779.75mm to 1638.42mm, from
2.153Kg ·mm to 0.009Kg ·mm and from 1327 to 639 respectively.

5. Conclusions

In order to solve packing and layout problems more effectively, we took
several strategies on PGA and presented an improved hybrid algorithm named
PSO-IA. These measures involve introducing immunity principle, PSO up-
date operators, hybrid strategy, modified rank-based selection, as well as
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(a) Best layout by PGA (b) Best layout by PSO-IA

(c) Best layout by HCPSO-IA

Figure 4: The obtained best layout patterns of P2 by three algorithms

Table 7: Comparison of average values of optimal results by three algorithms of P2

Algorithms R∗/mm J/Kg ·mm K

PGA 1779.75 2.153 1327
PSO-IA 1712.61 0.784 986
HPSO-IA 1638.42 0.009 639
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multi-subpopulation evolution based on improved adaptive crossover and
mutation. Additionally, in order to contribute to solving layout design prob-
lems of complex engineering systems satisfactorily, we further propose a nov-
el human-computer cooperative PSO-based immune algorithm (HCPSO-IA)
to realize the idea of man-machine synergy in engineering application. In
HCPSO-IA, the artificial individuals supplied by designers properly, together
with algorithm individuals, consist of the whole population of the algorithm.
Artificial individuals also replace the relevant individuals at an opportune
moment during evolutionary process. HCPSO-IA benefits by giving free rein
to the talents of designers and computers, and can realize the cooperation of
their intelligence at the algorithmic level.

Two problems originated from engineering layout design demonstrate the
effectiveness of the proposed algorithms and verify that the attempt is mean-
ingful. According to obtained results, it is clear that PSO-IA and HCPSO-IA
depict better performances than traditional parallel genetic algorithms. Some
key performance indices, such as envelope area and static non-equilibrium
value, have been significantly improved by the proposed two algorithms. By
contrast, HCPSO-IA has higher performance than PSO-IA. This demon-
strates that the introduction of human knowledge and experience is really
beneficial in obtaining better solutions to engineering problems. Experience
also illustrate that the more complex a problem is, the proposed algorithms
are superior to the traditional algorithms, both in providing quality solution-
s and computationally more efficient, though HCPSO-IA is not satisfactory
for some relatively simple problems in terms of time requirement. The rea-
son lies in that the time spent on human-computer interaction may occupy
rather high percentage in the total time cost for solving simple problems. In
future, it is worthwhile making attempts to our approaches to solving more
packing and layout problems in practice. It deserves to be noted that our
methodology is problem-independent and can also be easily applied to other
engineering problems.
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