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1.1 INTRODUCTION

Analyzing three dimensional protein structures is a very important task in molecular
biology. Nowadays, the solution for protein structures often stems from the use of the
state-of-the-art technologies such as nuclear magnetic resonance (NMR) spectroscopy
techniques or X-Ray crystallography etc. as seen in the increasing number of PDB
[34] entries. Protein Data Bank is a database of 3D structural data of large biological
molecules, such as proteins and nucleic acids. It was provedthat structurally similar
proteins tend to have similar functions even if their amino acid sequences are not
similar to one another. Thus, it is very important to find proteins with similar structures
(even in part) from the growing database to analyze protein functions. Yang et al. [47]
exploited machine learning techniques including variantsof Self-Organizing Global
Ranking, a decision tree, and support vector machine (SVM) algorithms to predict
the tertiary structure of transmembrane proteins. Hecker et al. [14] developed a state
of the art protein disorder predictor and tested it on a largeprotein disorder dataset
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created from the Protein Data Bank. The relationship of sensitivity and specificity is
also evaluated. Habib et al. [11] presented a new SVM based approach to predict the
subcellular locations based on amino acid and amino acid pair composition. More
protein features can be taken into consideration to improvethe accuracy significantly.
Wang et al. [45] discussed an empirical approach to specify the localization of protein
binding regions utilizing information including the distribution pattern of the detected
RNA fragments and the sequence specificity of RNase digestion. Another important
aproach of protein structural similarity is based on database indexing methods. Gao
and Zaki [9] has proposed a method for indexing protein tertiary structure by extracting
a protein local feature vectors and suffix trees. Shibuya [43] developed a structure
called geometric suffix tree which indexes protein 3-D structures based on theirCα

atoms 3-D coordinates.
These studies are often targeted mainly at some kind of selection of the PDB

database. In our past work [28, 29] we have focused on task to compute all to
all protein similarities which appears in current PDB database based on their 3-D
structural features. The structural similarity defined between any two proteins in
PDB can be calculated using information retrieval methods and schemes and suffix
trees. These methods were previously widely studied and arecommonly used in these
days [49, 13, 5, 23, 21]. To be able to evaluate the precision of the methods used
to determine the protein structural similarity it is important to compare the results
toward the existing state-of-the-art techniques or databases. The existing state-of-
the-art databases of protein structural similarities are e.g. DALI [15], SCOP [42] or
CATH [3].

1.2 PROTEIN STRUCTURE

Proteins are large molecules that provide structure and control reactions in all cells.
In many cases only a small part of the structure -an active site - is directly functional,
the rest exists only to create and fix the spatial relationship among the active site
residues [19]. Chemically, protein molecules are long polymers typically containing
several thousand atoms, composed of a uniform repetitive backbone (or main chain)
with a particular side chain attached to each residue. The amino acid sequence of a
protein records the succession of side chains. There are twenty different amino acids
that make up essentially all protein molecules on earth. Every amino acid has its
own original design composed of a central carbon (also called the alpha carbon -Cα)
which is bonded to hydrogen, carboxylic acid group, amino group and unique side
chain or R-group. The chemical properties of the R group are what give an amino
acid its character.

The Danish protein chemist K.U. Linderstrøm-Lang described the protein structure
in three different levels: primary structure, secondary structure and tertiary structure.
For proteins composed of more than one subunit, J.D. Bernallcalled the assembly of
the monomers the quaternary structure.
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Figure 1.1 Chemical structure of two amino acids.

1.2.1 Primary Structure

The unique sequence of amino acids in a protein is termed theprimary structure .
When amino acids form a protein chain, a unique bond, termed the peptide bond, exists
between two amino acids. The sequence of a protein begins with the amino of the
first amino acid and continues to the carboxyl end of the last amino acid. Each of the
amino acid has its own unique one letter abbreviation (e.g. Alanine - A, Methionine
- M, Arginine - R, ...). Thus the primary structure of the can be expressed like string
of these letters. The examples of protein primary structureencoding follows:

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHL...

MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAI...

AYIAKQRQISFVKSHFSRQLEERLGLIEVQAPILSRVGDGTQDNLSGAEK...

1.2.2 Secondary Structure

The second level in the hierarchy of protein structure consists of the various spatial
arrangements resulting from the folding of localized partsof a polypeptide chain;
these arrangements are referred to assecondary structures[20]. These foldings are
either in a helical shape, called thealpha-helix (α-helix) (which was first proposed by
Linus Pauling et. al in 1951 [32]), or abeta-pleated sheet (β-sheet)shaped similar
to the zig-zag foldings of an accordion. The turns of the alpha-helix are stabilized by
hydrogen bonding between every fourth amino acid in the chain. The beta-pleated
sheet is formed by folding successive planes [35]. Each plane is five to eight amino
acids long. Alpha helices and beta sheets are linked by less structured loop regions to
form domains (Figure 1.2.2). The domains can potentionaly form a fully functional
proteins.

1.2.3 Tertiary Structure

Tertiary structure refers to the overall conformation of a polypeptide chain that
is, the three-dimensional arrangement of all its amino acidresidues. Each of the
atoms of amino acid residue has its own 3-Dx, y, z coordinates. In contrast with
secondary structures, which are stabilized by hydrogen bonds, tertiary structure is
primarily stabilized by hydrophobic interactions betweenthe non-polar side chains,
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(a)α-helix (b)β-sheet (c) Domain

Figure 1.2 Secondary structure elements and domain example.

Figure 1.3 Tertiary structure of an Apoptosome-Procaspase-9 CARD complex.

hydrogen bonds between polar side chains, and peptide bonds. These stabilizing
forces hold elements of secondary structureα-helices,β-strands, turns, and random
coils compactly together. The most the protein structures (about 90%) available in
the Protein Data Bank have been resolved by X-ray crystallography. This method
allows one to measure the 3-D density distribution of electrons in the protein (in
the crystallized state) and thereby infer the 3-D coordinates of all the atoms to be
determined to a certain resolution. Just only about 9% of theknown protein structures
have been obtained by Nuclear Magnetic Resonance techniques (NMR spectroscopy)
[2].
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1.2.4 Quaternary Structure

Some proteins need to functionally associate with others assubunits in a multimeric
structure. This is called the quaternary structure of the protein. This can also be
stabilized by disulfide bonds and by non-covalent interactions with reacting substrates
or cofactors. Excellent example of quaternary structure isthat of hemoglobin. Adult
hemoglobin consists of two alpha subunits and two beta subunits, held together by
non-covalent interactions [35].

1.3 PROTEIN DATABASES

In these days there exist several protein databases publicly available on-line. These
databases assembles various information about proteins, protein structures, protein
functions, protein relationships, etc. Probably the main and most valuable database is
the Protein Databank which consists of protein three dimensional structures resolved
by state-of-the-art techniques such as X-Ray crystallography or NMR spectroscopy.
Other on-line databases are generated by automated computer methods or by biolo-
gists it selfs.

1.3.1 Protein Databank - PDB

The PDB was established in 1971 at Brookhaven National Laboratory and originally
contained 7 structures. Nowadays the PDB archive contains almost 80000 resolved
structures and is still growing practically every day. The PDB archive is the single
worldwide repository which contains information about experimentally-determined
structures of proteins, nucleic acids, and complex assemblies. The structures in the
archive range from tiny proteins and bits of DNA to complex molecular machines like
the ribosome. The structures in this archive is resolved by the state-of-the-art methods
X-Ray crystallography and NMR spectroscopy. As a member of the wwwPDB, the
RCSB PDB curates and annotates PDB data according to agreed upon standards [34].
The PDB archive freely available to everyone and is updated each week at target
time of Wednesday 00:00 UTC (Coordinated Universal Time). This database can be
accessed online athttp://www.pdb.org. The structures can be also downloaded
from their FTP service atftp://ftp.wwpdb.org/pub/pdb/.

1.3.2 SCOP: Structural Classification of Proteins

This database provides a detailed and comprehensive description of the structural
and evolutionary relationships of proteins whose three-dimensional structures have
been determined by X-Ray crystallography or NMR spectroscopy (PDB Databank
entries). The recent version 1.75 (June 2009) of this database includes 38221 PDB
entries. The classification of protein structures in the database is based on evolutionary
relationships and on the principles that govern their three-dimensional structure. The
method used to construct the protein classification in SCOP is essentially the visual
inspection and comparison of structures though various automatic tools are used to
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make the task manageable and help provide generality [42, 24, 25, 26, 27]. Each of the
protein entry in SCOP database (each chain of protein respectively) is classified into
the Class, Folding Pattern, Super-Family, Family, Domain and Species categories.
These categories are hierarchically arranged from Class toSpecies. SCOP database
is available with no cost for the user athttp://scop.mrc-lmb.cam.ac.uk/scop/.

1.3.3 CATH Protein Structure Classification

The CATH is a database constructed using a semi-automatic method for hierarchical
classification of protein domains [31]. The CATH stands for -Class,Architecture,
Topology andHomologous super-family. CATH shares many broad features with its
main rival, SCOP, however there are also many areas in which the detailed classifi-
cation differs greatly. CATH defines four classes: mostly-alpha, mostly-beta, alpha
and beta, few secondary structures. Much of the work in CATH database is is done
by automatic methods toward the SCOP, though there are important manual tasks to
the classification. The Most important step in CATH classification is to separate the
proteins into domains. The domains are next automatically sorted into classes and
clustered on the basis of sequence similarities. These clusters (groups) form theH
levelsof the classification (homologous super-family groups). The topology level is
formed by structural comparisons of the homologous groups.Finally, the Architec-
ture level is assigned manually [31]. For more detailed descriptions of CATH database
building process and comparison with SCOP and other databases please see [12, 6].
CATH database can be accessed and searched athttp://www.cathdb.info/.

1.3.4 DALI - Distance matrix ALIgnment

The DALI database is based on exhaustive all-against-all 3Dstructure comparison of
protein structures currently in the PDB. The structural neighborhoods and alignments
are automatically maintained and regularly updated using the DALI search engine.
The DALI algorithm works with 3-D coordinates of each protein that are used to
calculate residue-to-residue (Cα-to-Cα) distance matrices. The distance matrices are
first decomposed into elementary contact patterns, e.g. hexapeptide-hexapeptide sub-
matrices. Then, similar contact patterns in the two matrices are paired and combined
into larger consistent set of pairs. This method is fully automatic and identifies struc-
tural resemblances and common structural cores accuratelyand sensitively, even in
the presence of geometrical distortions [15, 16]. The DALI database can be accessed
from the DALI server athttp://ekhidna.biocenter.helsinki.fi/dali.

1.4 VECTOR SPACE MODEL

The vector model [1] of documents was established in the 1970’s [37, 38]. A document
in the vector model is represented as a vector. Each dimension (element) of this vector
corresponds to a separate term appearing in document collection. If a term occurs in
the document, its value in the vector is non-zero. The vectormodel is widely used
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information retrieval scheme for measuring similarity between documents it selfs or
between user query and documents in the collection [29, 28, 23, 7, 17, 41, 39, 18].

In the vector model there arem different termst1, . . . , tm for indexingN docu-
ments. Then each documentdi is represented by a vector:

di = (wi1, wi2, . . . , wim) ,

wherewij is the weight of the termtj in the documentdi. These term weights are
ultimately used to compute the degree of similarity betweeneach document stored in
the system and the user query. The weight of the term in the document vector can be
determined in many ways. A common approach uses the so calledtf × idf (Term
Frequency× Inverse Document Frequency) method [40], in which the weight of the
term is determined by these factors: how often the termtj occurs in the documentdi

(the term frequencytfij) and how often it occurs in the whole document collection
(the document frequencydfj . Precisely, the weight of the termtj in the documentdi

is [18]:
wij = tfij × idfj = tfij × log

n

dfj

(1.1)

whereidf stands for the inverse document frequency. This method assigns high
weights to terms that appear frequently in a small number of documents in the docu-
ment set.
An index file of the vector model is represented by matrix:

D =











w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wn1 wn2 . . . wNm











,

wherei-th row matchesi-th document, andj-th column matchesj-th term.
The similarity of two documents in vector model is usually given by the following

formula – Cosine Similarity Measure:

sim(di, dj) = cos θ =

∑m

k=1
(wikwjk)

√

∑m

k=1
(wik)

2
∑m

k=1
(wjk)

2

(1.2)

Suppose we have two documentsd1 = (w11, w12) andd2 = (w21, w22), where
w11, w12 represent the weights of termst1, t2 in documentd1 andw21, w22 represent
the weights of termst1, t2 in documentd2. Then the geometrical representation of
cosine similarity is shown in Figure 1.4.

For more information about vector space model, please consult [22, 33, 1, 37, 38,
39].

1.5 SUFFIX TREES

A suffix tree is a data structure that allows efficient string matching and querying.
Suffix trees have been studied and used extensively, and havebeen applied to fun-
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Figure 1.4 Geometrical representation of cosine similarity.

damental string problems such as finding the longest repeated substring [46], strings
comparisons [8], and text compression [36]. Following this, we describe the suffix
tree data structure - its definition, construction algorithms and main characteristics.

1.5.1 Definitions

The following description of the suffix tree was taken from Gusfield’s bookAlgorithms
on Strings, Trees and Sequences[10]. Suffix trees commonly dealing with strings as
sequence of characters. One major difference is that we treat documents as sequences
of words, not characters. A suffix tree of a string is simply a compact trie of all the
suffixes of that string. Citation [48]:

Definition A suffix treeT for an m-word stringS is a rooted directed tree with
exactlym leaves numbered 1 to m. Each internal node, other than the root, has at
least two children and each edge is labeled with a nonempty sub-string of words of
S. No two edges out of a node can have edge labels beginning withthe same word.
The key feature of the suffix tree is that for any leafi, the concatenation of the edge
labels on the path from the root to leafi exactly spells out the suffix ofS that starts
at positioni, that is it spells outS[i . . . m].

In cases where one suffix ofS matches a prefix of another suffix ofS then no suffix
tree obeying the above definition is possible since the path for the first suffix would not
end at a leaf. To avoid this, we assume the last word ofS does not appear anywhere
else in the string. This prevents any suffix from being a prefixto another suffix. To
achieve this we can add a terminating character, which is notin the language thatS
is taken from, to the end ofS
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Figure 1.5 Simple example of suffix trie and suffix tree of stringMALAGA#.

Suppose we have a short protein sequenceMALAGA which is combination of four
amino acids - Methionine, Alanine, Leucine and Glycine. Example of suffix trie of
the stringMALAGA# is shown in Figure 1.5.1 (a). Corresponding suffix tree of the string
MALAGA# is presented in Figure 1.5.1 (b). There are six leaves in thisexample, marked
as rectangles and numbered from 1 to 6. The terminating characters are also shown
in this Figure.

In a similar manner, a suffix tree of a set of strings, called a generalized suffix tree
[10], is a compact trie of all the suffixes of all the strings inthe set [48]:

Definition A generalized suffix treeT for a setS of n stringsSn, each of length
mn, is a rooted directed tree with exactly

∑

mn leaves marked by a two number
tuple (k, l) where k ranges from 1 ton and l ranges from 1 tomk. Each internal
node, other than the root, has at least two children and each edge is labeled with a
nonempty sub-string of words of a string inS. No two edges out of a node can have
edge labels beginning with the same word. For any leaf(i, j), the concatenation of
the edge labels on the path from the root to leaf(i, j) exactly spells out the suffix of
Si that starts at positionj, that is it spells outSi[j . . . mi].

Figure 1.6 is an example of a generalized suffix tree of the setof two strings
- RNADNA# and DNARNA#. The internal nodes of the suffix tree are drawn as
circles, and are labeled froma tod. Leaves are drawn as rectangles and numbersdi =
(d1, . . . , dn) in each rectangle indicates the string from which that suffix originates -
a unique number that identifies the string. Each string is considered to have a unique
terminating symbol.

1.5.2 Suffix Tree Construction Algorithms

The naive, straightforward method to build a suffix tree for astring S of lengthL

takesO(L2) time. The naive method first enters a single edge for the suffixS[1 . . . L]
into the tree. Then it successively enters the suffixS[i . . . L] into the growing tree
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Figure 1.6 Example of the generalized suffix tree.

for i increasing from 2 toL. The details of this construction method are not within
the bounds of this article. Various suffix tree constructionalgorithms can be found in
[10] (a good book on suffix tree construction algorithms in general).

Several linear time algorithms for constructing suffix trees exist [30, 44, 46]. To
be precise, these algorithms also exhibit a time dependencyon the size of the vocab-
ulary (or the alphabet when dealing with character based trees): they actually have a
time bound ofO(L × min(log |V |, log L)), whereL is the length of the string and
|V | is the size of the language. These methods are more difficult to implement then
the naive method, which is sufficiently suitable for our purpose.

We have also made some implementation improvements of the naive method to
achieve better than the O(L2) worst-case time bound. With these improvements,
we have achieved constant access time for finding an appropriate child of the root
(this is important because the root node has the same count ofchild nodes as it is the
size of the alphabet - count of terms in document collection)and logarithmic time to
find an existing child or to insert a new child node to any otherinternal nodes of the
tree [23]. Next we have also improved the generalized suffix tree data structure to be
suitable for large document collections [23].

1.6 INDEXING 3-D PROTEIN STRUCTURES

As was mentioned above the data for protein 3-D structures indexing is retrieved from
PDB database, which consists of proteins, nucleic acids andcomplex assemblies.
Before indexing protein structures we consider only complete protein structures. We
filter out all nucleic acids and complex assemblies from the entire PDB database.
Next we filter out proteins, which have incomplete N-Cα-C-O backbones (e.g. some
of the files have C atoms in the protein backbone missing, etc.). After this cleaning
step, we have a collection of files containing a description of a specific protein and its
three dimensional structure and containing only amino acidresidues with complete
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a N-Cα-C-O atom sequence. Each retrieved file has at least one main chain (some
proteins have more than one main chain) of at least one model (some PDB files
contained more models of three dimensional protein structure). In cases when the
PDB file contained multiple chains or models, we took into account all of those (all
main-chains of all models).

To be able to measure 3-D protein structure similarity usingsuffix trees and vector
space model, we need to encode protein 3-D structure into a vector. representation.

1.6.1 Torsion Angles

Any plane can be defined by two non-collinear vectors lying inthat plane; taking
their cross product and normalizing yields the normal unit vector to the plane. Thus,
a torsion angle can be defined by four, pairwise non-collinear vectors.

The backbone torsion angles of proteins are calledφ (phi, involving the backbone
atoms C-N-Cα-C),ψ (psi, involving the backbone atoms N-Cα-C-N) andω (omega,
involving the backbone atomsCα-C-N-Cα). Thus,φ controls the C-C distance,ψ
controls the N-N distance andω controls theCα-Cα distance.

The planarity of the peptide bond usually restrictsω to be 180◦ (the typical trans
case) or 0◦ (the rare cis case). Theφ andψ torsion angles tend to be from -180◦ to
180◦.

1.6.2 Encoding the 3-D Protein Main Chain Structure for Inde xing

To be able to index proteins by information retrieval (IR) techniques, we need to
encode the 3D structure of the protein backbone into some sequence of characters,
words or integers (as in our case). The area of protein 3D structure encoding has
been widely studied by authors in previous works e.g. [50, 9,4]. Since the protein
backbone is the sequence of the amino acid residues (in 3D space) we are able to
encode this backbone into the sequence of integers in the following manner.

For example let us say the protein backbone consists of six amino acid residues
RNADNA (abbreviations for Arginine, Asparagine, Alanine and Aspartic acid). The
relationship between the two following residues can be described by its torsion angles
φ, ψ andω. Sinceφ andψ are taking values from the interval〈−180◦, 180◦〉 it must
be done some normalization. From this interval can be obtained discreet values by
dividing the interval into equal sized subintervals (for example into 36 subintervals),
e.g.−180◦, −170◦,. . . ,0◦,10◦,. . . ,180◦. Each of these values was labeled with non-
negative integers as follows: 00, 01,. . . , 36 where 00 standsfor −180◦. Now, let’s
say thatφ is −21◦, the closest discrete value is−20◦ which has the label 16, so we
have encoded this torsion with the string ’16’. The same holds forψ. Torsion angle
ω was encoded as the two charactersA or B since theω tends to be almost in every
case0◦ or 180◦. After concatenation of these three parts we get a string, which looks
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something like this ’A0102’, which means thatω ≈ 180◦, φ ≈ −170◦, ψ ≈ −160◦.
Concatenation was done in the following manner:ωφψ.

1.6.3 Indexing

The objective of this stage is to prepare the data for indexing by suffix trees. The
suffix tree can index sequences. The resulting sequence in this case is a sequence
of nonnegative integers. For example, let’s say we have a protein with a backbone
consisting of 6 residues e.g. RNADNA with its three dimensional properties. The
resulting encoded sequence can be for example:
{A3202, A2401, A2603, A2401, A2422, A2422, A2220}
After obtaining this sequence of 6 words, we create a dictionary of these words (each
unique word receives its own unique non negative integer identifier). The translated
sequence appears as follows:
{0, 1, 2, 1, 3, 3, 4}
In this way, we encode each main chain of each model containedinto one PDB file.
This task is done for every protein included in our filtered PDB collection. Now we
are ready for indexing proteins using suffix trees.

1.7 PROTEIN SIMILARITY ALGORITHM

We describe the algorithm for measuring protein similaritybased on their tertiary
structure. A brief description of the algorithm follows:

1. Encode 3-D protein structure into vectors 1.6.

2. Insert all encoded main chains of all proteins in the collection into the gener-
alized suffix tree data structure.

3. Find all maximal substructure clusters in the suffix tree.

4. Construct a vector model of all proteins in our collection.

5. Build proteins similarity matrix.

6. For each protein find top N similar proteins.

1.7.1 Inserting All Main Chains into the Suffix Tree

At this stage of the algorithm, we construct a generalized suffix tree of all encoded
main chains. As mentioned in Section 1.6, we obtain the encoded forms of three
dimensional protein main chains - sequences of positive numbers. All of these se-
quences are inserted into the generalized suffix tree data structure (section 1.5).
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1.7.2 Finding All Maximal Substructure Clusters

To be able to build a vector model of proteins, we have to find all maximal phrase
clusters. Recall the example given in Section 1.6: the phrases can be e.g. RNADNA#,
RNA#, DNA#, etc. (just imagine that phrase RNA# is equal to“A3202 A2401 A2603
#” ). Thephrase in our context is an encoded protein main chain or any of its parts.
The document in our context can be seen as a set of encoded mainchains of the protein.
Now we can define a maximal phrase cluster (the longest commonsubstructure) [49]:

Definition A phrase cluster is a phrase that is shared by at least two documents,
and the group of documents that contain the phrase. A maximalphrase cluster is a
phrase cluster whose phrase cannot be extended by any word inthe language without
changing (reducing) the group of documents that contain it.Maximal phrase clusters
are those we are interested in.

Now we simply traverse the generalized suffix tree and identify all maximal phrase
clusters (i.e. all of the longest common substructures). Maximal phrase cluster can
be seen as a kind of 3-D structural alignment - common parts of3-D protein structure
shared between two or more proteins. Figure 1.7 displays theexample of maximal
phrase cluster.
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1.7.3 Building a Vector Model

We describe the procedure for building the matrix representing the vector model index
file (section 1.4). In a classical vector space model, the document is represented by
the terms (which are words) respectively and by the weights of the terms. In our
model the document is represented not by the terms but by the common phrases
(maximal phrase clusters)!- the term in our context is a common phrase i.e. maxi-
mal phrase cluster.

In the previous stage of the algorithm, we have identified allmaximal phrase clusters
- all the longest common substructures. From the definition of the phrase cluster, we
know that the phrase cluster is the group of the documents sharing the same phrase
(group of proteins sharing the same substructure). Now we can obtain the matrix
representing the vector model index file directly from the generalized suffix tree.
Each document (protein) is represented by the maximal phrase clusters in which it is
contained. For computing the weights of the phrase clusters, we are using atf × idf

weighting schema as given by Equation 1.1.

Simple example: Let us say that we have a phrase cluster containing documents
di. These documents share the same phrasetj . We computewij values for all doc-
uments appearing in a phrase cluster sharing the phrasetj . This task is done for all
phrase clusters identified by the previous stage of the algorithm.

Now we have a complete matrix representing the index file in a vector space model
(section 1.4).

1.7.4 Building a Similarity Matrix

In the previous stage of the algorithm, we have constructed avector model index file.
To build a protein similarity matrix, we use standard information retrieval techniques
for measuring the similarity in a vector space model. As mentioned in Section 1.4, we
have used cosine similarity, which looks quite suitable forour purpose. The similarity
matrix is given by:
Documents (proteins) similarity matrix:

S =











1 sim(d1, d2) . . . sim(d1, dn)
sim(d2, d1) 1 . . . sim(d2, dn)

...
...

. . .
...

sim(dn, d1) sim(dn, d2) . . . 1











,

where thei-th row matches thei-th document (protein respectively), and thej-th
column matches thej-th document (protein). The similarity matrix is diagonally
symmetrical.
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1.7.5 Finding Similar Proteins

This step is quite simple. When we have computed the similarity matrixS, we simply
sort the documents (proteins) on each row, according to their similarity scores. The
higher the score, the more similar the 2 proteins are. This isdone for each protein in
our protein collection.

1.8 SUMMARY
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