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1.1 INTRODUCTION

Analyzing three dimensional protein structures is a vergantant task in molecular
biology. Nowadays, the solution for protein structuregonftems from the use of the
state-of-the-art technologies such as nuclear magnstoesce (NMR) spectroscopy
techniques or X-Ray crystallography etc. as seen in theasing number of PDB
[34] entries. Protein Data Bank is a database of 3D strulatiata of large biological
molecules, such as proteins and nucleic acids. It was prinadtructurally similar
proteins tend to have similar functions even if their amioa@aequences are not
similarto one another. Thus, itis very important to find pin$ with similar structures
(evenin part) from the growing database to analyze protgiotfons. Yang etal. [47]
exploited machine learning techniques including variaftSelf-Organizing Global
Ranking, a decision tree, and support vector machine (SMyHrithms to predict
the tertiary structure of transmembrane proteins. Hedkalr §€14] developed a state
of the art protein disorder predictor and tested it on a lgmgéein disorder dataset
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created from the Protein Data Bank. The relationship ofitieitg and specificity is
also evaluated. Habib et al. [11] presented a new SVM bagemagh to predict the
subcellular locations based on amino acid and amino acidcpaiposition. More
protein features can be taken into consideration to impifew@ccuracy significantly.
Wang et al. [45] discussed an empirical approach to spduifioicalization of protein
binding regions utilizing information including the diktution pattern of the detected
RNA fragments and the sequence specificity of RNase digestinother important
aproach of protein structural similarity is based on datelindexing methods. Gao
and Zaki [9] has proposed a method forindexing proteinggrstructure by extracting
a protein local feature vectors and suffix trees. Shibuyé dé8eloped a structure
called geometric suffix tree which indexes protein 3-D stricgs based on thed,
atoms 3-D coordinates.

These studies are often targeted mainly at some kind of ts@tecf the PDB
database. In our past work [28, 29] we have focused on taslkrmuate all to
all protein similarities which appears in current PDB datsd based on their 3-D
structural features. The structural similarity definednmstn any two proteins in
PDB can be calculated using information retrieval methaussthemes and suffix
trees. These methods were previously widely studied ancbanenonly used in these
days [49, 13, 5, 23, 21]. To be able to evaluate the precisidgheomethods used
to determine the protein structural similarity it is impant to compare the results
toward the existing state-of-the-art techniques or dateda The existing state-of-
the-art databases of protein structural similarities age BALI [15], SCOP [42] or
CATH [3].

1.2 PROTEIN STRUCTURE

Proteins are large molecules that provide structure anttalaeactions in all cells.
In many cases only a small part of the structuae active site - is directly functional,
the rest exists only to create and fix the spatial relatignsinnong the active site
residues [19]. Chemically, protein molecules are long pays typically containing
several thousand atoms, composed of a uniform repetitivkbzae (or main chain)
with a particular side chain attached to each residue. Theaatid sequence of a
protein records the succession of side chains. There argyta#ferent amino acids
that make up essentially all protein molecules on earth.rfEaeino acid has its
own original design composed of a central carbon (alsod #tle alpha carbonG,,)
which is bonded to hydrogen, carboxylic acid group, amimmugrand unique side
chain or R-group. The chemical properties of the R group dratwive an amino
acid its character.

The Danish protein chemist K.U. Linderstrgm-Lang desctibe protein structure
in three different levels: primary structure, secondamnycttire and tertiary structure.
For proteins composed of more than one subunit, J.D. Berabdld the assembly of
the monomers the quaternary structure.
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Figure 1.1 Chemical structure of two amino acids.

1.2.1 Primary Structure

The unique sequence of amino acids in a protein is termegrihary structure .
When amino acids form a protein chain, a unique bond, ternegpithtide bond, exists
between two amino acids. The sequence of a protein begihstingtamino of the
first amino acid and continues to the carboxyl end of the laéha acid. Each of the
amino acid has its own unique one letter abbreviation (elgniAe - A, Methionine
- M, Arginine - R, ...). Thus the primary structure of the candxpressed like string
of these letters. The examples of protein primary structmeding follows:

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHL. . .
MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAI. ..
AYTAKQRQISFVKSHFSRQLEERLGLIEVQAPILSRVGDGTQDNLSGAEK. . .

1.2.2 Secondary Structure

The second level in the hierarchy of protein structure issif the various spatial
arrangements resulting from the folding of localized pafts polypeptide chain;
these arrangements are referred teexondary structures[20]. These foldings are
either in a helical shape, called thpha-helix (a-helix) (which was first proposed by
Linus Pauling et. al in 1951 [32]), orlaeta-pleated sheetf§-sheet)shaped similar
to the zig-zag foldings of an accordion. The turns of the alpklix are stabilized by
hydrogen bonding between every fourth amino acid in therch@he beta-pleated
sheet is formed by folding successive planes [35]. Eachegkafive to eight amino
acids long. Alpha helices and beta sheets are linked bytiestsred loop regions to
form domains (Figure 1.2.2). The domains can potentioraiyfa fully functional
proteins.

1.2.3 Tertiary Structure

Tertiary structure refers to the overall conformation of a polypeptide chaiatth
is, the three-dimensional arrangement of all its amino aegidues. Each of the
atoms of amino acid residue has its own 3eDy, z coordinates. In contrast with
secondary structures, which are stabilized by hydrogem$atertiary structure is
primarily stabilized by hydrophobic interactions betwélea non-polar side chains,
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(a) a-helix (b) 3-sheet (c) Domain

Figure 1.2 Secondary structure elements and domain example.

Figure 1.3 Tertiary structure of an Apoptosome-Procaspase-9 CARD complex.

hydrogen bonds between polar side chains, and peptide boHusse stabilizing
forces hold elements of secondary structurbelices,3-strands, turns, and random
coils compactly together. The most the protein structuagst 90%) available in
the Protein Data Bank have been resolved by X-ray crystalfgg. This method
allows one to measure the 3-D density distribution of etewtrin the protein (in
the crystallized state) and thereby infer the 3-D coordisaif all the atoms to be
determined to a certain resolution. Just only about 9% oftioevn protein structures
have been obtained by Nuclear Magnetic Resonance teclsn(iji¥R spectroscopy)

2].
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1.2.4 Quaternary Structure

Some proteins need to functionally associate with othessibsnits in a multimeric
structure. This is called the quaternary structure of thagin. This can also be
stabilized by disulfide bonds and by non-covalent inteoastivith reacting substrates
or cofactors. Excellent example of quaternary structutieasof hemoglobin. Adult
hemoglobin consists of two alpha subunits and two beta st#hureld together by
non-covalent interactions [35].

1.3 PROTEIN DATABASES

In these days there exist several protein databases publiallable on-line. These
databases assembles various information about proteii®im structures, protein
functions, protein relationships, etc. Probably the mashmost valuable database is
the Protein Databank which consists of protein three dimeasstructures resolved
by state-of-the-art techniques such as X-Ray crystalfggraar NMR spectroscopy.
Other on-line databases are generated by automated campetteods or by biolo-
gists it selfs.

1.3.1 Protein Databank - PDB

The PDB was established in 1971 at Brookhaven National leibor and originally
contained 7 structures. Nowadays the PDB archive cont&imssa 80000 resolved
structures and is still growing practically every day. THeBParchive is the single
worldwide repository which contains information about esimentally-determined
structures of proteins, nucleic acids, and complex assembrhe structures in the
archive range from tiny proteins and bits of DNA to compleXecolar machines like
the ribosome. The structures in this archive is resolvetiégtate-of-the-art methods
X-Ray crystallography and NMR spectroscopy. As a membenefitwwPDB, the
RCSB PDB curates and annotates PDB data according to agveadtandards [34].
The PDB archive freely available to everyone and is updasedh eveek at target
time of Wednesday 00:00 UTC (Coordinated Universal Timélis Database can be
accessed online atttp: //www.pdb.org. The structures can be also downloaded
from their FTP service afttp://ftp.wwpdb.org/pub/pdb/.

1.3.2 SCOP: Structural Classification of Proteins

This database provides a detailed and comprehensive plgscrof the structural
and evolutionary relationships of proteins whose thremediisional structures have
been determined by X-Ray crystallography or NMR spectpgd®DB Databank
entries). The recent version 1.75 (June 2009) of this datalmecludes 38221 PDB
entries. The classification of protein structures in thallase is based on evolutionary
relationships and on the principles that govern their titiegensional structure. The
method used to construct the protein classification in SGO#Rsentially the visual
inspection and comparison of structures though variousnaatic tools are used to
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make the task manageable and help provide generality [425226, 27]. Each of the
protein entry in SCOP database (each chain of protein régplg is classified into
the Class, Folding Pattern, Super-Family, Family, Domaid 8pecies categories.
These categories are hierarchically arranged from ClaSpécies. SCOP database
is available with no cost for the usenettp: //scop.mrc-1mb. cam. ac.uk/scop/.

1.3.3 CATH Protein Structure Classification

The CATH is a database constructed using a semi-automatfochér hierarchical
classification of protein domains [31]. The CATH stands f@lass,Architecture,
Topology andHomologous super-family. CATH shares many broad featurtsitsi
main rival, SCOP, however there are also many areas in whieldeétailed classifi-
cation differs greatly. CATH defines four classes: mostpha, mostly-beta, alpha
and beta, few secondary structures. Much of the work in CA@itdloiase is is done
by automatic methods toward the SCOP, though there are tergonanual tasks to
the classification. The Most important step in CATH clasatin is to separate the
proteins into domains. The domains are next automaticallied into classes and
clustered on the basis of sequence similarities. Theseectugroups) form thél
levelsof the classification (homologous super-family groups)e Tapology level is
formed by structural comparisons of the homologous gro&psally, the Architec-
ture levelis assigned manually [31]. For more detaileddesons of CATH database
building process and comparison with SCOP and other degaljdsase see [12, 6].
CATH database can be accessed and searchadpt //www.cathdb. info/.

1.3.4 DALI - Distance matrix ALIgnment

The DALI database is based on exhaustive all-against-afitBizture comparison of
protein structures currently in the PDB. The structurajhbbrhoods and alignments
are automatically maintained and regularly updated usiegXALI search engine.
The DALI algorithm works with 3-D coordinates of each prot¢hat are used to
calculate residue-to-residu€(-to-C,,) distance matrices. The distance matrices are
first decomposed into elementary contact patterns, e.@pegride-hexapeptide sub-
matrices. Then, similar contact patterns in the two madrare paired and combined
into larger consistent set of pairs. This method is fullyoawtic and identifies struc-
tural resemblances and common structural cores accumatdlgensitively, even in
the presence of geometrical distortions [15, 16]. The DAdtathase can be accessed
from the DALI server ahttp://ekhidna.biocenter.helsinki.fi/dali.

1.4 VECTOR SPACE MODEL

The vector model [1] of documents was established inthe'$93D, 38]. Adocument
in the vector model is represented as a vector. Each dime(edEment) of this vector
corresponds to a separate term appearing in documenttgmtietf a term occurs in
the document, its value in the vector is non-zero. The vatiodel is widely used



SUFFIX TREES 7

information retrieval scheme for measuring similarityvibeén documents it selfs or
between user query and documents in the collection [29,28,27, 41, 39, 18].

In the vector model there ane different termstq,...,t,, for indexing N docu-
ments. Then each documehtis represented by a vector:

di = (wir, Wiz, . .., Wim )

wherew;; is the weight of the term; in the document/;. These term weights are
ultimately used to compute the degree of similarity betwegrh document stored in
the system and the user query. The weight of the term in therdent vector can be
determined in many ways. A common approach uses the so ¢dlledidf (Term
Frequencyx Inverse Document Frequency) method [40], in which the wieadthe
term is determined by these factors: how often the tgrotcurs in the docume
(the term frequencyf;;) and how often it occurs in the whole document collection
(the document frequencyf;. Precisely, the weight of the tertnin the document;
is [18]:

ww==tﬁindﬂ*=tﬁjxl0gll (1.1)

df;

whereidf stands for the inverse document frequency. This methodjressiigh
weights to terms that appear frequently in a small numbepotithents in the docu-
ment set.

An index file of the vector model is represented by matrix:

w11 w12 e W1im

w21 W22 ... W2m
D= . . . . )

Wnp1 Wp2 ... WNm

wherei-th row matcheg-th document, ang-th column matcheg-th term.
The similarity of two documents in vector model is usuallyagi by the following
formula — Cosine Similarity Measure:

et (Wirw;k)

VI (wa)? Sy (win)?

Suppose we have two documenrts= (w1, w12) andds = (wa1, wae), Where
w11, w2 represent the weights of terms ¢, in document!; andwsy, wos represent
the weights of terms;, t» in documentl,. Then the geometrical representation of
cosine similarity is shown in Figure 1.4.

For more information about vector space model, please tof#2y 33, 1, 37, 38,
39].

sim(d;, d;) = cosf = 1.2)

1.5 SUFFIX TREES

A suffix tree is a data structure that allows efficient stringtching and querying.
Suffix trees have been studied and used extensively, anddegreapplied to fun-
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di(W1, W)

(Vg , Woy |

o
Wy

Figure 1.4 Geometrical representation of cosine similarity.

damental string problems such as finding the longest repsatestring [46], strings
comparisons [8], and text compression [36]. Following,thie describe the suffix
tree data structure - its definition, construction alganisrand main characteristics.

1.5.1 Definitions

The following description of the suffix tree was taken fromsBeld’s bookAlgorithms
on Strings, Trees and SequengB3]. Suffix trees commonly dealing with strings as
sequence of characters. One major difference is that wedmeaments as sequences
of words, not characters. A suffix tree of a string is simplyapact trie of all the
suffixes of that string. Citation [48]:

Definition A suffix treeT" for an m-word string S is a rooted directed tree with
exactlym leaves numbered 1 to m. Each internal node, other than thighas at
least two children and each edge is labeled with a nonemkssing of words of
S. No two edges out of a node can have edge labels beginninghetame word.
The key feature of the suffix tree is that for any leathe concatenation of the edge
labels on the path from the root to leaéxactly spells out the suffix of that starts
at position, that is it spells oub|i ... m].

In cases where one suffix Sfmatches a prefix of another suffix then no suffix
tree obeying the above definition is possible since the pathé first suffix would not
end at a leaf. To avoid this, we assume the last worfl dbes not appear anywhere
else in the string. This prevents any suffix from being a prefianother suffix. To
achieve this we can add a terminating character, which ignbe language thag
is taken from, to the end &f
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(a) Suffix Trie (b) Suffix Tree

Figure 1.5 Simple example of suffix trie and suffix tree of stringLAGA#.

Suppose we have a short protein sequanaaca which is combination of four
amino acids - Methionine, Alanine, Leucine and Glycine. fapé&e of suffix trie of
the stringaLAGA# is shown in Figure 1.5.1 (a). Corresponding suffix tree eftiing
MALAGA# is presented in Figure 1.5.1 (b). There are six leaves iret@mple, marked
as rectangles and numbered from 1 to 6. The terminating clesisaare also shown
in this Figure.

In a similar manner, a suffix tree of a set of strings, calleéregalized suffix tree
[10], is a compact trie of all the suffixes of all the stringgthie set [48]:

Definition A generalized suffix tre&" for a setS of n strings.S,,, each of length
my,, 1S a rooted directed tree with exactly m,, leaves marked by a two number
tuple (k,1) where k ranges from 1 ta and! ranges from 1 ton,. Each internal
node, other than the root, has at least two children and edgd is labeled with a
nonempty sub-string of words of a string.$h No two edges out of a node can have
edge labels beginning with the same word. For any (&gf), the concatenation of
the edge labels on the path from the root to lgaf) exactly spells out the suffix of
S; that starts at positio, that is it spells ous;[j . . . m;].

Figure 1.6 is an example of a generalized suffix tree of theobétvo strings
- RNADNA# and DNARNA#. The internal nodes of the suffix tree alrawn as
circles, and are labeled froato d. Leaves are drawn as rectangles and numbets
(di,...,d,)in each rectangle indicates the string from which that saffiginates -
a unique number that identifies the string. Each string isiciemed to have a unique
terminating symbol.

1.5.2 Suffix Tree Construction Algorithms

The naive, straightforward method to build a suffix tree fatiéng S of length L
takesO(L?) time. The naive method first enters a single edge for the stiffix. . L]
into the tree. Then it successively enters the suffiix. . . L] into the growing tree
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Figure 1.6 Example of the generalized suffix tree.

for 7 increasing from 2 td.. The details of this construction method are not within
the bounds of this article. Various suffix tree constructiorithms can be found in
[10] (a good book on suffix tree construction algorithms ingral).

Several linear time algorithms for constructing suffix srexist [30, 44, 46]. To
be precise, these algorithms also exhibit a time dependamtye size of the vocab-
ulary (or the alphabet when dealing with character bases}rehey actually have a
time bound ofO(L x min(log |V|,log L)), whereL is the length of the string and
|V| is the size of the language. These methods are more diffcuttglement then
the naive method, which is sufficiently suitable for our mse.

We have also made some implementation improvements of tive naethod to
achieve better than the Of) worst-case time bound. With these improvements,
we have achieved constant access time for finding an apptephild of the root
(this is important because the root node has the same coahtldhodes as it is the
size of the alphabet - count of terms in document collectang) logarithmic time to
find an existing child or to insert a new child node to any oth&rnal nodes of the
tree [23]. Next we have also improved the generalized sufix tlata structure to be
suitable for large document collections [23].

1.6 INDEXING 3-D PROTEIN STRUCTURES

As was mentioned above the data for protein 3-D structudixing is retrieved from
PDB database, which consists of proteins, nucleic acidscantplex assemblies.
Before indexing protein structures we consider only cotegheotein structures. We
filter out all nucleic acids and complex assemblies from thiree PDB database.
Next we filter out proteins, which have incomplete M-C-O backbones (e.g. some
of the files have C atoms in the protein backbone missing). gidter this cleaning
step, we have a collection of files containing a descriptianspecific protein and its
three dimensional structure and containing only amino eesttues with complete
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a N-Ca-C-O atom sequence. Each retrieved file has at least one rhain (some
proteins have more than one main chain) of at least one madeig PDB files
contained more models of three dimensional protein straftun cases when the
PDB file contained multiple chains or models, we took intocartt all of those (all
main-chains of all models).

To be able to measure 3-D protein structure similarity usinfjx trees and vector
space model, we need to encode protein 3-D structure intotarveepresentation.

1.6.1 Torsion Angles

Any plane can be defined by two non-collinear vectors lyinghiat plane; taking
their cross product and normalizing yields the normal uedter to the plane. Thus,
a torsion angle can be defined by four, pairwise non-collineators.

The backbone torsion angles of proteins are caligghi, involving the backbone
atoms C-N€',-C), ¢ (psi, involving the backbone atoms ;-C-N) andw (omega,
involving the backbone atoms,-C-N-C,). Thus,¢ controls the C-C distance;
controls the N-N distance angdcontrols theC,,-C,, distance.

The planarity of the peptide bond usually restrictso be 180 (the typical trans
case) or O (the rare cis case). Theand torsion angles tend to be from -18f
180°.

1.6.2 Encoding the 3-D Protein Main Chain Structure for Inde  xing

To be able to index proteins by information retrieval (IR3Hriques, we need to
encode the 3D structure of the protein backbone into someeseg of characters,
words or integers (as in our case). The area of protein 3[2tstrel encoding has
been widely studied by authors in previous works e.g. [5@]9Since the protein
backbone is the sequence of the amino acid residues (in 3t2spee are able to
encode this backbone into the sequence of integers in tloevio manner.

For example let us say the protein backbone consists of sircaatid residues
RNADNA (abbreviations for Arginine, Asparagine, AlaninedAspartic acid). The
relationship between the two following residues can beritesad by its torsion angles
¢, v andw. Since¢ andy are taking values from the interval 180°, 180°) it must
be done some normalization. From this interval can be obthifiscreet values by
dividing the interval into equal sized subintervals (foample into 36 subintervals),
e.g.—180°, —170°,... 0°,10°,...,180°. Each of these values was labeled with non-
negative integers as follows: 00, 01,..., 36 where 00 stéords 180°. Now, let's
say thatyp is —21°, the closest discrete value-i20° which has the label 16, so we
have encoded this torsion with the string '16’. The same &ifidd+). Torsion angle
w was encoded as the two charactérer B since thev tends to be almost in every
case)® or 180°. After concatenation of these three parts we get a stringztwboks
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something like this 'A0102’, which means thatx= 180°, ¢ ~ —170°, ¢) & —160°.
Concatenation was done in the following mannegi).

1.6.3 Indexing

The objective of this stage is to prepare the data for indpkin suffix trees. The
suffix tree can index sequences. The resulting sequencésicake is a sequence
of nonnegative integers. For example, let’'s say we have &@ipravith a backbone
consisting of 6 residues e.g. RNADNA with its three dimensioproperties. The
resulting encoded sequence can be for example:

{A3202, A2401, A2603, A2401, A2422, A2422, A2220

After obtaining this sequence of 6 words, we create a diatipof these words (each
unigue word receives its own unique non negative integettifier). The translated
sequence appears as follows:

{0,1,2,1,3,3,%4

In this way, we encode each main chain of each model contamedne PDB file.
This task is done for every protein included in our filteredBP@llection. Now we
are ready for indexing proteins using suffix trees.

1.7 PROTEIN SIMILARITY ALGORITHM

We describe the algorithm for measuring protein similabised on their tertiary
structure. A brief description of the algorithm follows:

1. Encode 3-D protein structure into vectors 1.6.

2. Insert all encoded main chains of all proteins in the ctilbe into the gener-
alized suffix tree data structure.

3. Find all maximal substructure clusters in the suffix tree.
4. Construct a vector model of all proteins in our collection
5. Build proteins similarity matrix.

6. For each protein find top N similar proteins.

1.7.1 Inserting All Main Chains into the Suffix Tree

At this stage of the algorithm, we construct a generalizdfixstiee of all encoded
main chains. As mentioned in Section 1.6, we obtain the esdtddrms of three
dimensional protein main chains - sequences of positivebeusn All of these se-
guences are inserted into the generalized suffix tree datztste (section 1.5).
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Figure 1.7 Example of maximal phrase cluster - nddandc.

1.7.2 Finding All Maximal Substructure Clusters

To be able to build a vector model of proteins, we have to fihdnalkimal phrase
clusters. Recall the example given in Section 1.6: the @srean be e.g. RNADNA%#,
RNA#, DNA#, etc. (justimagine that phrase RNA# is equalk8202 A2401 A2603
#'). Thephrasein our context is an encoded protein main chain or any of ittsspa
The documentin our context can be seen as a set of encodedima&is of the protein.
Now we can define a maximal phrase cluster (the longest consoiustructure) [49]:

Definition A phrase cluster is a phrase that is shared by at least twonuus,
and the group of documents that contain the phrase. A mayihrale cluster is a
phrase cluster whose phrase cannot be extended by any wbrllanguage without
changing (reducing) the group of documents that contaMaximal phrase clusters
are those we are interested in.

Now we simply traverse the generalized suffix tree and ifieali maximal phrase
clusters (i.e. all of the longest common substructures)xiival phrase cluster can
be seen as a kind of 3-D structural alignment - common paBdprotein structure
shared between two or more proteins. Figure 1.7 displaysxbmple of maximal
phrase cluster.
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1.7.3 Building a Vector Model

We describe the procedure for building the matrix represgitihe vector model index
file (section 1.4). In a classical vector space model, theich@nt is represented by
the terms (which are words) respectively and by the weighteeterms. In our
model the document is represented not by the terms but by theaammon phrases
(maximal phrase clusters)!- the term in our context is a common phrase i.e. maxi-
mal phrase cluster.

In the previous stage of the algorithm, we have identifiedhatkimal phrase clusters
- all the longest common substructures. From the definitidhephrase cluster, we
know that the phrase cluster is the group of the documentinghthe same phrase
(group of proteins sharing the same substructure). Now weob#ain the matrix
representing the vector model index file directly from theegyalized suffix tree.
Each document (protein) is represented by the maximal plolasters in which it is
contained. For computing the weights of the phrase clustersre using af x idf
weighting schema as given by Equation 1.1.

Simple example: Let us say that we have a phrase clustericmfalocuments
d;. These documents share the same phras#/e computew;; values for all doc-
uments appearing in a phrase cluster sharing the phyaJéis task is done for all
phrase clusters identified by the previous stage of the igthgor

Now we have a complete matrix representing the index file in@or space model
(section 1.4).

1.7.4 Building a Similarity Matrix

In the previous stage of the algorithm, we have constructexttor model index file.

To build a protein similarity matrix, we use standard infaition retrieval techniques
for measuring the similarity in a vector space model. As no@eid in Section 1.4, we
have used cosine similarity, which looks quite suitablefarpurpose. The similarity
matrix is given by:

Documents (proteins) similarity matrix:

1 sim(dy,d2) ... sim(dy,dy)
5 sim(da, dy) 1 . sim(da,dy)
sim(dy,,dy)  sim(d,,ds) ... 1

where thei-th row matches theé-th document (protein respectively), and tj¢h
column matches thg-th document (protein). The similarity matrix is diagowall
symmetrical.
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1.7.5 Finding Similar Proteins

This step is quite simple. When we have computed the sinyilarittrix.S, we simply
sort the documents (proteins) on each row, according to sirailarity scores. The
higher the score, the more similar the 2 proteins are. Thdsie for each protein in
our protein collection.

1.8

SUMMARY
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