
Soft Computing Models for Network Intrusion
Detection Systems

Ajith Abraham1 and Ravi. Jain2

1Department of Computer Science, Oklahoma State University, USA
ajith.abraham@ieee.org
2School of Information Science, University of South Australia, Australia
ravi.jain@unisa.edu.au

Abstract: Security of computers and the networks that connect them is
increasingly becoming of great significance. Computer security is defined
as the protection of computing systems against threats to confidentiality,
integrity, and availability. There are two types of intruders: external
intruders, who are unauthorized users of the machines they attack, and
internal intruders, who have permission to access the system with some
restrictions. This chapter presents a soft computing approach to detect
intrusions in a network. Among the several soft computing paradigms, we
investigated fuzzy rule-based classifiers, decision trees, support vector
machines, linear genetic programming and an ensemble method to model
fast and efficient intrusion detection systems. Empirical results clearly
show that soft computing approach could play a major role for intrusion
detection.

Keywords: intrusion detection information security, soft computing

1 Introduction

The traditional prevention techniques such as user authentication, data
encryption, the avoidance of programming errors and firewalls are used as
the first line of defense for computer security. If a password is weak and is
compromised, user authentication cannot prevent unauthorized use.
Firewalls are vulnerable to errors in configuration and ambiguous or
undefined security policies. They are generally unable to protect against
malicious mobile code, insider attacks and unsecured modems.
Programming errors cannot be avoided as the complexity of the system
and application software is changing rapidly, leaving behind some

exploitable weaknesses. Intrusion detection is therefore required as an
additional wall for protecting systems [5][9]. Intrusion detection is useful
not only in detecting successful intrusions, but also provides important
information for timely countermeasures [11][13]. An intrusion is defined
as any set of actions that attempt to compromise the integrity,
confidentiality or availability of a resource. An attacker can gain access
because of an error in the configuration of a system. In some cases it is
possible to fool a system into giving access by misrepresenting oneself. An
example is sending a TCP packet that has a forged source address that
makes the packet appear to come from a trusted host. Intrusions may be
classified into several types [12].

• Attempted break-ins, which are detected by typical behavior profiles
or violations of security constraints.

• Masquerade attacks, which are detected by atypical behavior profiles
or violations of security constraints.

• Penetration of the security control system, which are detected by
monitoring for specific patterns of activity.

• Leakage, which is detected by atypical use of system resources.
• Denial of service, which is detected by atypical use of system

resources.
• Malicious use, which is detected by atypical behavior profiles,

violations of security constraints, or use of special privileges.
The process of monitoring the events occurring in a computer system or

network and analyzing them for sign of intrusions is known as intrusion
detection. Intrusion detection is classified into two types: misuse intrusion
detection and anomaly intrusion detection.

Misuse intrusion detection uses well-defined patterns of the attack that
exploit weaknesses in system and application software to identify the
intrusions. These patterns are encoded in advance and used to match
against the user behavior to detect intrusion.

Anomaly intrusion detection uses the normal usage behavior patterns to
identify the intrusion. The normal usage patterns are constructed from the
statistical measures of the system features, for example, the CPU and I/O
activities by a particular user or program. The behavior of the user is
observed and any deviation from the constructed normal behavior is
detected as intrusion.

We have two options to secure the system completely, either prevent the
threats and vulnerabilities which come from flaws in the operating system,
as well as in the application programs, or detect them and take some action
to prevent them in future and also repair the damage. It is impossible in

practice, and even if possible, extremely difficult and expensive, to write a
completely secure system. Transition to such a system for use in the entire
world would be an equally difficult task. Cryptographic methods can be
compromised if passwords and keys are stolen. No matter how secure a
system is, it is vulnerable to insiders who abuse their privileges. There is
an inverse relationship between the level of access control and efficiency.
More access controls make a system less user-friendly and more likely to
not be used.

An Intrusion Detection System (IDS) is a program that analyzes what
happens or has happened during an execution and tries to find indications
that the computer has been misused. An intrusion detection system does
not eliminate the use of preventive mechanism but it works as the last
defensive mechanism in securing the system. Data mining approaches are
a relatively new technique for intrusion detection.

2 Intrusion Detection – A Data Mining Approach

Data mining is a relatively new approach for intrusion detection. Data
mining approaches for intrusion detection were first implemented in
mining audit data for automated models for intrusion detection [2][8]. The
raw data is first converted into ASCII network packet information, which
in turn is converted into connection level information. These connection
level records contain connection features like service, duration, etc. Data
mining algorithms are applied to this data to create models to detect
intrusions. Data mining algorithms used in this approach are RIPPER (rule
based classification algorithm), meta-classifier, frequent episode algorithm
and association rules. These algorithms are applied to audit data to
compute models that accurately capture the actual behavior of intrusions as
well as normal activities.

The RIPPER algorithm was used to learn the classification model in
order to identify normal and abnormal behavior [4]. Frequent episode
algorithm and association rules together are used to construct frequent
patterns from audit data records. These frequent patterns represent the
statistical summaries of network and system activity by measuring the
correlations among system features and the sequential co-occurrence of
events. From the constructed frequent patterns the consistent patterns of
normal activities and the unique intrusion patterns are identified and
analyzed, and then used to construct additional features. These additional
features are useful in learning the detection model more efficiently in order
to detect intrusions. The RIPPER classification algorithm is then used to

learn the detection model. A Meta classifier is used to learn the correlation
of intrusion evidence from multiple detection models and to produce a
combined detection model. The main advantage of this system is the
automation of data analysis through data mining, which enables it to learn
rules inductively, replacing manual encoding of intrusion patterns.
However, some novel attacks may not be detected.

Audit data analysis and mining combine’s association rules and
classification algorithm to discover attacks in audit data [1]. Association
rules are used to gather necessary knowledge about the nature of the audit
data as the information about patterns within individual records can
improve the classification efficiency. This system has two phases: training
and detection. In the training phase a database of frequent item sets is
created for the attack-free items by using only the attack-free data set. This
serves as a profile against which frequent item sets found later will be
compared. Next a sliding-window, on-line algorithm is used to find
frequent item sets in the last D connections and compares them with those
stored in the attack-free database, discarding those that are deemed normal.
In this phase a classifier is also trained to learn the model to detect the
attack. In the detection phase a dynamic algorithm is used to produce item
sets that are considered as suspicious and used by the classification
algorithm already learned to classify the item set as attack, false alarm
(normal event) or as unknown. Unknown attacks are the ones which are
not able to detect either as false alarms or as known attacks. This method
attempts to detect only anomaly attacks.

3 Soft Computing Models

Soft Computing (SC) is an innovative approach to construct
computationally intelligent systems consisting of artificial neural
networks, fuzzy inference systems, approximate reasoning and derivative
free optimization methods such as evolutionary computation etc. In
contrast with conventional artificial intelligence techniques which only
deal with precision, certainty and rigor the guiding principle of soft
computing is to exploit the tolerance for imprecision, uncertainty, low
solution cost, robustness, partial truth to achieve tractability and better
rapport with reality [15].

3.1 Fuzzy Rule Based Systems

Fuzzy logic has proved to be a powerful tool for decision making to
handle and manipulate imprecise and noisy data. The notion central to
fuzzy systems is that truth values (in fuzzy logic) or membership values (in
fuzzy sets) are indicated by a value on the range [0.0, 1.0], with 0.0
representing absolute falseness and 1.0 representing absolute truth. A
fuzzy system is characterized by a set of linguistic statements based on
expert knowledge. The expert knowledge is usually in the form of if-then
rules.
Definition 1: Let X be some set of objects, with elements noted as x. Thus,
X = {x}.
Definition 2: A fuzzy set A in X is characterized by a membership function
which are easily implemented by fuzzy conditional statements. In the case
of fuzzy statement if the antecedent is true to some degree of membership
then the consequent is also true to that same degree.

A simple rule structure: If antecedent then consequent

A simple rule: If variable1 is low and variable2 is high then output is
benign else output is malignant

In a fuzzy classification system, a case or an object can be classified by
applying a set of fuzzy rules based on the linguistic values of its attributes.
Every rule has a weight, which is a number between 0 and 1 and this is
applied to the number given by the antecedent. It involves 2 distinct parts.
First the antecedent is evaluated, which in turn involves fuzzifying the
input and applying any necessary fuzzy operators and second applying that
result to the consequent known as inference. To build a fuzzy classification
system, the most difficult task is to find a set of fuzzy rules pertaining to
the specific classification problem.

We explored three fuzzy rule generation methods for intrusion
detection systems. Let us assume that we have a n dimensional c-class
pattern classification problem whose pattern space is an n-dimensional unit
cube [0, 1]n. We also assume that m patterns xp = (xp l,...,xpn) , p =
1,2,...,m, are given for generating fuzzy if-then rules where xp∈ [0,1] for
p =1,2,..., m, i =1,2,...,n where xp∈ [0,1] for p =1,2,..., m, i =1,2,...,n.

Rule Generation Based on the Histogram of Attribute Values
(FR1)

In this method, use of histogram itself is an antecedent membership
function. Each attribute is partitioned into 20 membership functions fh(.),

h=1,2,...,20. The smoothed histogram ()k
i im x of class k patterns for the ith

attribute is calculated using the 20 membership functions fh (.) as follows:

()1
()

 k

 , h=1,2,...,20h-1

km x f xh pii i km x Classp

for xi hβ β

�=
∈

≤ ≤

(1)

where mk is the number of Class k patterns, 1,h hβ β� �−� � is the hth crisp

interval corresponding to the 0.5-level set of the membership function fh (.)
0, 1,1 20β β= = (2)

1 1
 for h=1,2,...,19

20 1 2
hhβ � �= −� 	−
 �

(3)

The smoothed histogram in (1) is normalized so that its maximum value is
1. A single fuzzy if-then rule is generated for each class. The fuzzy if-then
rule for the kth class can be written as

If x1 is 1
kA and ... and xn is

k
1A then class k, (4)

where k
iA is an antecedent fuzzy set for the ith attribute. The membership

function of k
iA is specified as

()
()

2

() exp
2

2

kxi ikA xii
k
i

µ

σ

� �
−� 	

� 	= −
� 	
� 	

 �

(5)

where k
iµ is the mean of the ith attribute values xpi of class k patterns, and

k
iσ is the standard deviation. Fuzzy if-then rules for the two-dimensional

two class pattern classification problem are written as follows:
If x3 is 1

3A and x4 is 1
4A then class 2 (6)

If x3 is 2
3A and x4 is

2 2a +b then class 3 (7)

membership function of each antecedent fuzzy set is specified by the mean
and the standard deviation of attribute values. For a new pattern xp =
(xp3,xp4), the winner rule is determined as follows:

{ }* *(). () max (). () 1,23 3 2 4 3 41 2
k kA x A x A x A x kp p p p= =

 (8)

Rule Generation Based on Partition of Overlapping Areas (FR2)

Figure 1 demonstrates a simple fuzzy partition, where the two-
dimensional pattern space is partitioned into 25 fuzzy subspaces by five
fuzzy sets for each attribute (S: small, MS: medium small, M: medium,
ML: medium large, L: large). A single fuzzy if-then rule is generated for
each fuzzy subspace. Thus the number of possible fuzzy if-then rules in
Figure 1 is 25.

Fig.1: An example of fuzzy partition

One disadvantage of this approach is that the number of possible fuzzy
if-then rules exponentially increases with the dimensionality of the pattern
space. Because the specification of each membership function does not
depend on any information about training patterns, this approach uses
fuzzy if-then rules with certainty grades. The local information about
training patterns in the corresponding fuzzy subspace is used for
determining the consequent class and the grade of certainty. In this
approach, fuzzy if-then rules of the following type are used:

If x1 is 1jA and ... and xn is jnA

then class Cj,

with CF = CF j, j =1,2 , . . ,N (9)
where j indexes the number of rules, N is the total number of rules, jiA is

the antecedent fuzzy set of the ith rule for the ith attribute, Cj; is the
consequent class, and CFj is the grade of certainty. The consequent class
and the grade of certainty of each rule are determined by the following
simple heuristic procedure:

Step 1: Calculate the compatibility of each training pattern xp
=(xp1,xp2,…,xpn) with the jth fuzzy if-then rule by the following
product operation:

() () ()... , 1, 2, ...,11 .x A x A x p mp p pnj j jnπ = × × =
 (10)

Step 2: For each class, calculate the sum of the compatibility grades
of the training patterns with the jth fuzzy if-then rule Rj:

() (), k=1,2,...,c

n
R xclass k j p

x class kp
β π= �

∈
 (11)

where () R jclass kβ the sum of the compatibility grades of the

training patterns in class k with the jth fuzzy if-then rule Rj.
Step 3: Find Class *

jA that has the maximum value () Rclass k jβ :

* { (),..., ()} k 1 cj Max R Rclass class j class jβ β β=

 (12)

If two or more classes take the maximum value or no training pattern
compatible with the jth fuzzy if-then rule (i.e., if βClass k(R j)=0 for k
=1,2,..., c) , the consequent class Ci can not be determined uniquely.
In this case, let Ci be φ.
Step 4: If the consequent class Ci is 0, let the grade of certainty CFj
be CF j = 0. Otherwise the grade of certainty CF j i s determined as
follows:

()

*(()) k j

R k j
1

Rclass j
CFj c

class
k

β β

β

−
=

�
=

 (13)

where
() k

(1)1
*

RClass j
ck

k k j

β
β = �

−=

≠

The above approach could be modified by partitioning only the
overlapping areas as illustrated in Figure 2.

small large

small large

(a) Simple fuzzy grid approach (b) Modified fuzzy grid approach

Fig. 2. Fuzzy partition of each attribute

This approach generates fuzzy if-then rules in the same manner as the
simple fuzzy grid approach except for the specification of each
membership function. Because this approach utilizes the information about

training patterns for specifying each membership function as mentioned in
Section 2.1.1, the performance of generated fuzzy if- then rules is good
even when we do not use the certainty grade of each rule in the
classification phase. In this approach, the effect of introducing the
certainty grade to each rule is not so important when compared to
conventional grid partitioning.

Neural Learning of Fuzzy Rules (FR3)

The derivation of if-then rules and corresponding membership functions
depends heavily on the a priori knowledge about the system under
consideration. However there is no systematic way to transform
experiences of knowledge of human experts to the knowledge base of a
Fuzzy Inference System (FIS). In a fused neuro-fuzzy architecture, neural
network learning algorithms are used to determine the parameters of fuzzy
inference system (membership functions and number of rules). Fused
neuro-fuzzy systems share data structures and knowledge representations.
A common way to apply a learning algorithm to a fuzzy system is to
represent it in a special neural network-like architecture. An Evolving
Fuzzy Neural Network (EFuNN) implements a Mamdani type FIS and all
nodes are created during learning. The nodes representing membership
functions (MF) can be modified during learning. Each input variable is
represented here by a group of spatially arranged neurons to represent a
fuzzy quantization of this variable. New neurons can evolve in this layer if,
for a given input vector, the corresponding variable value does not belong
to any of the existing MF to a degree greater than a membership threshold.
Technical details of the learning algorithm are given in [16].

3.2.Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on
linear genomes [3]. Its main characteristics in comparison to tree-based GP
are that the evolvable units are not expressions of a functional
programming language (like LISP), but the programs of an imperative
language (like c/c ++). An alternate approach is to evolve a computer
program at the machine code level, using lower level representations for
the individuals. This can tremendously hasten the evolution process as, no
matter how an individual is initially represented, finally it always has to be
represented as a piece of machine code, as fitness evaluation requires
physical execution of the individuals.

The basic unit of evolution here is a native machine code instruction that
runs on the floating-point processor unit (FPU). Since different

instructions may have different sizes, here instructions are clubbed up
together to form instruction blocks of 32 bits each. The instruction blocks
hold one or more native machine code instructions, depending on the sizes
of the instructions. A crossover point can occur only between instructions
and is prohibited from occurring within an instruction. However the
mutation operation does not have any such restriction. In this research a
steady state genetic programming approach was used to manage the
memory more effectively [1].

3.3. Decision Trees (DT)

Intrusion detection can be considered as classification problem where each
connection or user is identified either as one of the attack types or normal
based on some existing data. Decision trees work well with large data sets.
This is important as large amounts of data flow across computer networks.
The high performance of decision trees makes them useful in real-time
intrusion detection. Decision trees construct easily interpretable models,
which is useful for a security officer to inspect and edit. These models can
also be used in the rule-based models with minimum processing [7].
Generalization accuracy of decision trees is another useful property for
intrusion detection model. There will always be new attacks on the system,
which are small variations of known attacks after the intrusion detection
models are built. The ability to detect these new intrusions is possible due
to the generalization accuracy of decision trees.

3.4. Support Vector Machines (SVM)

Support Vector Machines have been proposed as a novel technique for
intrusion detection. SVM maps input (real-valued) feature vectors into a
higher dimensional feature space through some nonlinear mapping. SVMs
are powerful tools for providing solutions to classification, regression and
density estimation problems. These are developed on the principle of
structural risk minimization. Structural risk minimization seeks to find a
hypothesis for which one can find the lowest probability of error. The
structural risk minimization can be achieved by finding the hyper plane
with maximum separable margin for the data [14]. Computing the hyper
plane to separate the data points, i.e. training a SVM, leads to a quadratic
optimization problem. SVM uses a feature called a kernel to solve this
problem. A kernel transforms linear algorithms into nonlinear ones via a
map into feature spaces. SVMs classify data by using these support
vectors, which are members of the set of training inputs that outline a
hyper plane in feature space.

4.0 Attribute Deduction in Intrusion Detection Systems

Since the amount of audit data that an IDS needs to examine is very large
even for a small network, analysis is difficult even with computer
assistance because extraneous features can make it harder to detect
suspicious behavior patterns. Complex relationships exist between
features, which are difficult for humans to discover. IDS must therefore
reduce the amount of data to be processed. This is very important if real-
time detection is desired. The easiest way to do this is by doing an
intelligent input feature selection. Certain features may contain false
correlations, which hinder the process of detecting intrusions. Further,
some features may be redundant since the information they add is
contained in other features. Extra features can increase computation time,
and can impact the accuracy of IDS. Feature selection improves
classification by searching for the subset of features, which best classifies
the training data.

Feature selection is done based on the contribution the input variables
made to the construction of the decision tree. Feature importance is
determined by the role of each input variable either as a main splitter or as
a surrogate. Surrogate splitters are defined as back-up rules that closely
mimic the action of primary splitting rules. Suppose that, in a given model,
the algorithm splits data according to variable ‘protocol_type’ and if a
value for ‘protocol_type’ is not available, the algorithm might substitute
‘flag’ as a good surrogate. Variable importance, for a particular variable is
the sum across all nodes in the tree of the improvement scores that the
predictor has when it acts as a primary or surrogate (but not competitor)
splitter. Example, for node i, if the predictor appears as the primary splitter
then its contribution towards importance could be given as iimportance. But if
the variable appears as the nth surrogate instead of the primary variable,
then the importance becomes iimportance = (pn) * iimprovement in which p is the
‘surrogate improvement weight’ which is a user controlled parameter set
between (0-1) [17].

5.0 Intrusion Detection Data

In 1998, DARPA intrusion detection evaluation program created an
environment to acquire raw TCP/IP dump data for a network by simulating
a typical U.S. Air Force LAN [10]. The LAN was operated like a real
environment, but was blasted with multiple attacks. For each TCP/IP
connection, 41 various quantitative and qualitative features were extracted.

Of these a subset of 494,021 data were used for our studies, of which 20%
represent normal patterns [6]. Different categories of attacks are
summarized in Figure 4. Attack types fall into four main categories:

DoS: Denial of Service

Denial of Service (DoS) is a class of attack where an attacker makes a
computing or memory resource too busy or too full to handle legitimate
requests, thus denying legitimate users access to a machine. There are
different ways to launch DoS attacks: by abusing a computer’s legitimate
features; by targeting the implementation bugs; or by exploiting a system’s
miss configurations. DoS attacks are classified based on the services that
an attacker renders unavailable to legitimate users.

R2L: Unauthorized Access from a Remote Machine

A remote to user (R2L) attack is a class of attack where an attacker sends
packets to a machine over a network, then exploits the machine’s
vulnerability to illegally gain local access as a user. There are different
types of R2U attacks; the most common attack in this class is done using
social engineering.

U2Su: Unauthorized Access to Local Super User (root)

User to root (U2Su) exploits are a class of attacks where an attacker starts
out with access to a normal user account on the system and is able to
exploit vulnerability to gain root access to the system. Most common
exploits in this class of attacks are regular buffer overflows, which are
caused by regular programming mistakes and environment assumptions.

Probing: Surveillance and Other Probing

Probing is a class of attack where an attacker scans a network to gather
information or find known vulnerabilities. An attacker with a map of
machines and services that are available on a network can use the
information to look for exploits. There are different types of probes: some
of them abuse the computer’s legitimate features; some of them use social
engineering techniques. This class of attack is the most common and
requires very little technical expertise.

6.0 Experiment Setup and Results

The data for our experiments was prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Labs [10]. The data set
contains 24 attack types that could be classified into four main categories
namely Denial of Service (DoS), Remote to User (R2L), User to Root
(U2R) and Probing. The original data contains 744 MB data with
4,940,000 records. The data set has 41 attributes for each connection
record plus one class label. Some features are derived features, which are
useful in distinguishing normal connection from attacks. These features are
either continuous or discrete. Some features examine only the connections
in the past two seconds that have the same destination host as the current
connection, and calculate statistics related to protocol behavior, service,
etc. These are called same host features. Some features examine only the
connections in the past two seconds that have the same service as the
current connection and are called same service features. Some other
connection records were also sorted by destination host, and features were
constructed using a window of 100 connections to the same host instead of
a time window. These are called host-based traffic features. R2L and U2R
attacks don’t have any sequential patterns like DoS and Probe because the
former attacks have the attacks embedded in the data packets whereas the
later attacks have many connections in a short amount of time. So some
features that look for suspicious behavior in the data packets like number
of failed logins are constructed and these are called content features.

Our experiments have three phases namely data reduction, training
phase and testing phase. In the data reduction phase, important variables
for real-time intrusion detection are selected by feature selection. In the
training phase, the different soft computing models were constructed using
the training data to give maximum generalization accuracy on the unseen
data. The test data is then passed through the saved trained model to detect
intrusions in the testing phase. The 41 features are labeled as shown in
Table 1 and the class label is named as AP. This data set has five different
classes namely Normal, DoS, R2L, U2R and Probes. The training and test
comprises of 5,092 and 6,890 records respectively [6].

Our initial research was to reduce the number of variables. Using all 41
variables could result in a big IDS model, which could be an overhead for
online detection. The experiment system consists of two stages: Network
training and performance evaluation. All the training data were scaled to
(0-1). The decision tree approach described in Section 4 helped us to
reduce the number of variables to 12 variables. The list of reduced
variables is illustrated in Table2.

Table 1. Variables for intrusion detection data set

Variable No. Variable name Variable type Variable label
1 duration continuous A
2 protocol_type discrete B
3 service discrete C
4 flag discrete D
5 src_bytes continuous E
6 dst_bytes continuous F
7 land discrete G
8 wrong_fragment continuous H
9 urgent continuous I
10 hot continuous J
11 num_failed_logins continuous K
12 logged_in discrete L
13 num_compromised continuous M
14 root_shell continuous N
15 su_attempted continuous O
16 num_root continuous P
17 num_file_creations continuous Q
18 num_shells continuous R
19 num_access_files continuous S
20 num_outbound_cmds continuous T
21 is_host_login discrete U
22 is_guest_login discrete V
23 count continuous W
24 srv_count continuous X
25 serror_rate continuous Y
26 srv_serror_rate continuous X
27 rerror_rate continuous AA
28 srv_rerror_rate continuous AB
29 same_srv_rate continuous AC
30 diff_srv_rate continuous AD
31 srv_diff_host_rate continuous AE
32 dst_host_count continuous AF
33 dst_host_srv_count continuous AG
34 dst_host_same_srv_rate continuous AH
35 dst_host_diff_srv_rate continuous AI
36 dst_host_same_src_port_rate continuous AJ
37 dst_host_srv_diff_host_rate continuous AK
38 dst_host_serror_rate continuous AL
39 dst_host_srv_serror_rate continuous AM
40 dst_host_rerror_rate continuous AN
41 dst_host_srv_rerror_rate continuous AO

Table 2. Reduced variable set

C, E, F, L, W, X, Y, AB, AE, AF, AG, AI

Using the original and reduced data sets, we performed a 5-class
classification. The (training and testing) data set contains 11,982 randomly
generated points from the data set representing the five classes, with the
number of data from each class proportional to its size, except that the
smallest class is completely included. The set of 5,092 training data and
6,890 testing data are divided in to five classes: normal, probe, denial of
service attacks, user to super user and remote to local attacks. The datasets
contain a total of 24 training attack types, with an additional 14 types in
the test data only. Where the attack is a collection of different types of
instances that belong to the four classes described earlier and the other is
the normal data. The normal data belongs to class 1, probe belongs to class
2, denial of service belongs to class 3, user to super user belongs to class 4,
remote to local belongs to class 5. All the IDS models are trained and
tested with the same set of data.

We examined the performance of all three fuzzy rule based approaches
(FR1, FR2 and FR3) mentioned in Section 3.1. When an attack is correctly
classified the grade of certainty is increased and when an attack is
misclassified the grade of certainty is decreased. A learning procedure is
used to determine the grade of certainty. Triangular membership functions
were used for all the fuzzy rule based classifiers. We used 4 triangular
membership functions for each input variable for the EFuNN training
(FR3). A sensitivity threshold Sthr = 0.95 and error threshold Errthr = 0.05
was used for all the classes.89 rule nodes were developed during the one
pass learning [17].

The settings of various linear genetic programming system parameters
are of utmost importance for successful performance of the system. The
population space has been subdivided into multiple subpopulation or
demes. Migration of individuals among the subpopulations causes
evolution of the entire population. It helps to maintain diversity in the
population, as migration is restricted among the demes. Table 3 depicts the
parameter settings used for LGP experiments. The tournament size was set
at 120,000 for all the 5 classes. Figure 3 demonstrates the growth in
program length during 120,000 tournaments and the average fitness values
for detecting normal patterns (class 1). More illustrations are available in
[1].

Table 3. Parameter settings for linear genetic programming

Parameter Normal Probe DoS U2Su R2L
Population size 2048 2048 2048 2048 2048

Tournament size 8 8 8 8 8

Mutation frequency (%) 85 82 75 86 85

Crossover frequency (%) 75 70 65 75 70

Number of demes 10 10 10 10 10

Maximum program size 256 256 256 256 256

(a)

(b)

Fig. 3. LGP performance for the detection of normal patterns (a) growth in
program length (b) average fitness

Our trial experiments with SVM revealed that the polynomial kernel
option often performs well on most of the datasets. We also constructed
decision trees using the training data and then testing data was passed
through the constructed classifier to classify the attacks [12].

Table 4. Performance comparison using full data set

Table 5. Performance comparison using reduced data set

A number of observations and conclusions are drawn from the results
illustrated in Tables 4 and 5. Using 41 attributes, the FR2 method gave
100% accuracy for all the 5 classes, showing the importance of fuzzy
inference systems. For the full data set, LGP outperformed decision trees
and support vector machines in terms of detection accuracies (except for
one class).

The reduced dataset seems to work very well for most of the classifiers
except the fuzzy classifier (FR2). For detecting U2R attacks FR2 gave the
best accuracy. Due to the tremendous reduction in the number of attributes
(about 70% less), we are able to design a computational efficient intrusion
detection system. Since a particular classifier could not provide accurate

Classification accuracy on test data set (%) Attack
type

FR1 FR2 FR3 DT SVM LGP

Normal 40.44 100.00 98.26 99.64 99.64 99.73
Probe 53.06 100.00 99.21 99.86 98.57 99.89
DOS 60.99 100.00 98.18 96.83 99.92 99.95
U2R 66.75 100.00 61.58 68.00 40.00 64.00
R2L 61.10 100.00 95.46 84.19 33.92 99.47

Classification accuracy on test data set (%) Attack
type

FR1 FR2 FR3 DT SVM LGP

Normal 74.82 79.68 99.56 100.00 99.75 99.97
Probe 45.36 89.84 99.88 97.71 98.20 99.93
DOS 60.99 60.99 98.99 85.34 98.89 99.96
U2R 94.11 99.64 65.00 64.00 59.00 68.26
R2L 91.83 91.83 97.26 95.56 56.00 99.98

results for all the classes, we propose to use an ensemble approach as
demonstrated in Figure 4. The proposed ensemble model could detect all
the attacks with high accuracy (lowest accuracy being 99.64%) with only
12 input variables. Ensemble performance is summarized in Table 6.

Internet Intrusion detection
system

Firewall

Severs, machines, network etc.

System administrator

Input Feature
Selection

DT

LGP

LGP

FR2

LGP

Normal

R2L

DoS

Probe

U2R

41
 v

ar
ia

bl
es

12 variables

Fig. 4. IDS architecture using an ensemble of intelligent paradigms

Table 6. Performance of the ensemble method

Attack type Ensemble classification accuracy on test data (%)

Normal 100.00

Probe 99.93

DOS 99.96

U2R 99.64

R2L 99.98

In some classes the accuracy figures tend to be very small and may not
be statistically significant, especially in view of the fact that the 5 classes
of patterns differ in their sizes tremendously. For example only 27 data
sets were available for training the U2R class. More definitive conclusions
can only be made after analyzing more comprehensive sets of network
traffic.

7.0 Conclusions

In this chapter, we have illustrated the importance of soft computing
paradigms for modeling intrusion detection systems. For real time
intrusion detection systems, LGP would be the ideal candidate as it can be
manipulated at the machine code level. Overall, the fuzzy classifier (FR2)
gave 100% accuracy for all attack types using all the 41 attributes. The
proposed ensemble approach requires only 12 input variables. More data
mining techniques are to be investigated for attribute reduction and
enhance the performance of other soft computing paradigms.

Acknowledgements

Authors would like to thank S. Chebrulu and S. Peddabachigari
(Oklahoma State University, USA) for the various contributions during the
different stages of this research.

References

1. Abraham A., Evolutionary Computation in Intelligent Web Management,
Evolutionary Computing in Data Mining, Ghosh A. and Jain L.C. (Eds.),
Studies in Fuzziness and Soft Computing, Springer Verlag Germany, 2004.

2. Barbara D., Couto J., Jajodia S. and Wu N., ADAM: A Testbed for
Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record,
30(4), pp. 15-24, 2001.

3. Brameier. M. and Banzhaf. W., A comparison of linear genetic programming
and neural networks in medical data mining, Evolutionary Computation,”
IEEE Transactions on, Volume: 5(1), pp. 17-26, 2001.

4. Cohen W., Learning Trees and Rules with Set-Valued Features, American
Association for Artificial Intelligence (AAAI), 1996.

5. Denning D., An Intrusion-Detection Model, IEEE Transactions on Software
Engineering, Vol. SE-13, No. 2, pp.222-232, 1987.

6. KDD Cup 1999 Intrusion detection data set:
<http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz>

7. Brieman L., Friedman J., Olshen R., and Stone C., Classification of
Regression Trees. Wadsworth Inc., 1984.

8. Lee W. and Stolfo S. and Mok K., A Data Mining Framework for Building
Intrusion Detection Models. In Proceedings of the IEEE Symposium on
Security and Privacy, 1999.

9. Luo J. and Bridges S. M., Mining Fuzzy Association Rules and Fuzzy
Frequency Episodes for Intrusion Detection, International Journal of
Intelligent Systems, John Wiley & Sons, Vol. 15, No. 8, pp. 687-704, 2000.

10. MIT Lincoln Laboratory. <http://www.ll.mit.edu/IST/ideval/>
11. Mukkamala S., Sung A.H. and Abraham A., Intrusion Detection Using

Ensemble of Soft Computing Paradigms, Third International Conference on
Intelligent Systems Design and Applications, Intelligent Systems Design and
Applications, Advances in Soft Computing, Springer Verlag, Germany, pp.
239-248, 2003.

12. Peddabachigari S., Abraham A., Thomas J., Intrusion Detection Systems
Using Decision Trees and Support Vector Machines, International Journal of
Applied Science and Computations, USA, 2004.

13. Summers R.C., Secure Computing: Threats and Safeguards. McGraw Hill,
New York, 1997.

14. Vapnik V.N., The Nature of Statistical Learning Theory. Springer, 1995.
15. Zadeh L. A., Roles of Soft Computing and Fuzzy Logic in the Conception,

Design and Deployment of Information/Intelligent Systems, Computational
Intelligence: Soft Computing and Fuzzy-Neuro Integration with
Applications, O. Kaynak, L.A. Zadeh, B. Turksen, I.J. Rudas (Eds.), pp 1-9,
1998.

16. Kasabov N., Evolving Fuzzy Neural Networks - Algorithms, Applications
and Biological Motivation, in Yamakawa T and Matsumoto G (Eds),
Methodologies for the Conception, Design and Application of Soft
Computing, World Scientific, pp. 271-274, 1998

17. Shah K., Dave N., Chavan S., Mukherjee S., Abraham A. and Sanyal S.,
Adaptive Neuro-Fuzzy Intrusion Detection System, IEEE International
Conference on Information Technology: Coding and Computing (ITCC'04),
USA, IEEE Computer Society, Volume 1, pp. 70-74, 2004.

