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Abstract: Scheduling is a key problem in distributed heterogeneous computing systems in 

order to benefit from the large computing capacity of such systems and is an NP-complete 

problem. In this paper, we present a metaheuristic technique, namely the Particle Swarm 

Optimization (PSO) algorithm, for this problem. PSO is a population-based search 

algorithm based on the simulation of the social behavior of bird flocking and fish schooling. 

Particles fly in problem search space to find optimal or near-optimal solutions. The 

scheduler aims at minimizing makespan, which is the time when finishes the latest task. 

Experimental studies show that the proposed method is more efficient and surpasses those 

of reported PSO and GA approaches for this problem.  

Keywords: distributed heterogeneous computing systems; particle swarm optimization; 

scheduling 
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1. Introduction 

 

A distributed heterogeneous computing (HC) system consists of a distributed suite of different high-

performance machines, interconnected by high-speed networks, to perform different computationally 

intensive applications that have various computational requirements. Heterogeneous computing 

systems range from diverse elements or paradigms within a single computer, to a cluster of different 

types of PCs, to coordinated, geographically distributed machines with different architectures (e.g., 

Grids [1]). 

To exploit the different capabilities of a suite of heterogeneous resources effectively and satisfy 

users with high expectations for their applications, a crucial problem that needs to be solved in the 

framework of HC is the scheduling problem.  

Optimal scheduling involves mapping a set of tasks to a set of resources to efficiently exploit the 

capabilities of such systems. As mentioned in [2], optimal mapping tasks to machines in an HC suite is 

an NP-complete problem and therefore the use of heuristics is one of the suitable approaches. 

According to the type of tasks being scheduled, the scheduling problem can be classified into two 

types: scheduling meta-tasks and scheduling a directed acyclic graph (DAG) composed of 

communicating tasks. In this paper, we consider meta-task scheduling problem which involve 

allocation of a set of independent tasks from different users to a set of computing resources. 

In recent years some works have been done using pure heuristics to find near-optimal solutions. 

These heuristics are fast, straightforward and easy to implement. Some popular and efficient pure 

heuristics are Sufferage [3], min-min [4], max-min [4], LJFR-SJFR [5], min-max [6], etc. Also, to 

improve the quality of solutions, meta-heuristics have been presented for task scheduling problem. The 

most popular of meta-heuristic algorithms are genetic algorithm (GA) [7], simulated annealing (SA) [8], 

ant colony optimization (ACO) [9] and particle swarm optimization (PSO) [10].  

Ritchie and Levine [11] used a hybrid ant colony optimization for scheduling in HC systems. In this 

method, authors combined ant colony optimization with local and tabu search to find shorter 

schedules. Yarkhan and Dongarra [12] used simulated annealing approach for grid job scheduling. 

Page and Naughton [13] used a genetic algorithm method for scheduling HC systems. In this method 

the scheduling strategy operates in a dynamically changing computing resource environment and 

adapts to variable communication costs and variable availability of processing resources. Braun et al. 

[14] described eleven heuristics and compared them on different types of HC environments. The 

authors illustrated that the GA scheduler can obtain better results in comparison with others.  

Xhafa et al. [15] used Genetic Algorithm-based schedulers for computational grids and most of GA 

operators are implemented and compared to find the best GA scheduler for this problem. In [16] the 

authors also focused on Struggle Genetic Algorithms and their tuning for scheduling of independent 

jobs in computational grids. Hash-based implementations of the struggle Genetic operator for the GAs 

were proposed. Abraham et al. [17] used a fuzzy particle swarm optimization and Izakian et al. [18] 

used a discrete version of particle swarm optimization for scheduling problem. 

Xhafa et al. [19] exploited the capabilities of Cellular Memetic Algorithms (CMA) for obtaining 

efficient batch schedulers for grid systems. Authors implemented and studied several methods and 

operators of CMA for the job scheduling in grid systems. Abraham et al. [20] illustrated the usage of 

several nature inspired meta-heuristics (SA, GA, PSO, and ACO) for scheduling jobs in computational 
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grids using single and multi-objective optimization approaches. Also Xhafa and Abraham [21] have 

reviewed the most important concepts from grid computing related to scheduling problems and their 

resolution using heuristic and meta-heuristic approaches. The authors identified different types of 

scheduling based on different criteria, such as static vs. dynamic environment, multi-objectivity, 

adaptivity, etc. 

Different criteria can be used for evaluating the efficiency of scheduling algorithms, the most 

important of which is makespan. Makespan is the time when an HC system finishes the latest task. An 

optimal schedule will be the one that minimizes the makespan. 

PSO is an algorithm that follows a collaborative population-based search model and has been 

applied successfully to a number of problems, including standard function optimization problems [22], 

solving permutation problems [23] and training multi-layer neural networks [24] and its use is rapidly 

increasing. A PSO algorithm contains a swarm of particles in which each particle includes a potential 

solution. In contrast to evolutionary computation paradigms such as Genetic Algorithm, a swarm is 

similar to a population, while a particle is similar to an individual. The particles fly through a 

multidimensional search space in which the position of each particle is adjusted according to its own 

experience and the experience of its neighbors. PSO system combines local search methods (through 

self experience) with global search methods (through neighboring experience), attempting to balance 

exploration and exploitation [25]. 

In this paper, we present a version of particle swarm optimization approach for scheduling meta-

tasks in HC systems and the goal of scheduler is to minimize the makespan. In order to evaluate the 

performance of the proposed method, it is compared with genetic algorithm that presented in [14] for 

scheduling tasks in HC systems and continuous PSO that presented in [25] for task assignment 

problem. The experimental results show the presented method is more efficient and can be effectively 

used for HC systems scheduling. The remainder of this paper is organized in the following manner. In 

Section 2, we formulate the problem, in Section 3 the PSO paradigm is briefly discussed, Section 4 

describes the proposed method and Section 5 reports the experimental results. Finally Section 6 

concludes this work. 

 

2. Problem Definition 

 

An HC environment is composed of computing resources where these resources can be a single PC, 

a cluster of workstations or a supercomputer. Let T = {T1, T2,…,Tn} denote the set of tasks that in a 

specific time interval is submitted to HC system. Assume the tasks are independent of each other (with 

no inter-task data dependencies) and preemption is not allowed (they cannot change the resource they 

have been assigned to). Also assume at the time of submitting these tasks, m machines  

M = {M1, M2,…,Mm} are within the HC environment. In this paper it is assumed that each machine 

uses the First-Come, First-Served (FCFS) method for performing the received tasks. We assume that 

each machine in HC environment can estimate how much time is required to perform each task. In [14] 

Expected Time to Compute (ECT) matrix is used to estimate the required time for executing a task in a 

machine. An ETC matrix is an n × m matrix in which n is the number of tasks and m is the number of 

machines. One row of the ETC matrix contains the estimated execution time for a given task on each 

machine. Similarly one column of the ETC matrix consists of the estimated execution time of a given 
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machine for each task. Thus, for an arbitrary task Tj and an arbitrary machine Mi, ETC (Tj, Mi) is the 

estimated execution time of Tj on Mi. In ETC model we take the usual assumption that we know the 

computing capacity of each resource, an estimation or prediction of the computational needs of each 

task, and the load of prior work of each resource. 

Assume that Ci,j (i   {1,2,…m}, j   {1,2,…n}) is the execution time for performing jth task in ith 

machine and Wi (i   {1,2,…m}is the previous workload of Mi, then (1) shows the time required for Mi 

to complete the tasks included in it. According to the aforementioned definition, makespan can be 

estimated using (2): 

 





imachinetoallocatedjtask

iij WC        (1) 

 
},...,2,1{},max{ miWCmakespan

imachinetoallocatedjtask
iij  



    (2) 

 

In this paper the goal of scheduler is to minimize makespan. 

 

3. Particle Swarm Optimization 

 

Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired 

by bird flocking and fish schooling originally designed and introduced by Kennedy and Eberhart [10] 

in 1995. The algorithmic flow in PSO starts with a population of particles whose positions, which 

represent the potential solutions for the studied problem, and velocities are randomly initialized in the 

search space. In each iteration, the search for optimal position is performed by updating the particle 

velocities and positions. Also in each iteration, the fitness value of each particle’s position is 

determined using a fitness function. The velocity of each particle is updated using two best positions, 

personal best position and neighborhood best position. The personal best position, pbest, is the best 

position the particle has visited and nbest is the best position the particle and its neighbors have visited 

since the first time step. Based on the size of neighborhoods two PSO algorithms can be developed. 

When all of the population size of the swarm is considered as the neighbor of a particle nbest is called 

global best (gbest) and if the smaller neighborhoods are defined for each particle, then nbest is called 

local best (lbest). gbest uses the star neighborhood topology and lbest usually uses ring neighborhood 

topology. There are two main differences between gbest and lbest with respect to their convergence 

characteristics. Due to the larger particle interconnectivity of the gbest PSO it converges faster than the 

lbest PSO, but lbest PSO is less susceptible to being trapped in local optima. A particle’s velocity and 

position are updated as follows: 

 
);()( 2211 kkkkkk XnbestrcXpbestrcVV   k=1,2,…P     (3) 

 

kkk VXX         (4) 

 

where c1 and c2 are positive constants, called acceleration coefficients which control the influence of 

pbest and nbest on the search process, P is the number of particles in the swarm, r1 and r2 are random 
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values in range [0, 1] sampled from a uniform distribution. Figure 1 shows the pseudo-code of particle 

swarm optimization approach. 

 

Figure 1. Pseudo-code of particle swarm optimization approach. 

create a swarm with P particles. 

initialize the position and velocity of each particle randomly. 

calculate fitness value of each position. 

calculate pbest and nbest for each particle. 

repeat 

 update velocity of each particle using Equation (3). 

 update position of each particle using Equation (4). 

 calculate fitness value of each particle. 

 update pbest for each particle. 

 update nbest for each particle. 

until stopping condition is true; 

 

4. PSO for Task Scheduling in HC Systems 

 

In this section, we propose a version of particle swarm optimization for HC system scheduling. In 

this method, we add a heuristic to PSO. Particles need to be designed to present a sequence of tasks in 

available machines in HC system. Also the velocity has to be redefined. 

 

4.1. Particles Encoding 

 

One of the key issues in designing a successful PSO algorithm is the representation step, i.e. finding 

a suitable mapping between problem solution and PSO particle. In this paper each particle’s position is 

encoded in an n-dimensional search space in which n is the number of tasks to be scheduled. The value 

of each dimension is a natural number included in range [1, m] indicating the machine number, in 

which m is the number of available machines in HC system at the time of scheduling. Assume that  

Xk = {Xk1, Xk2,…,Xkn} shows the position of kth particle; Xkj indicates the machine where task Tj is 

assigned by the scheduler in this particle. Note that in this encoding method a machine number can 

appear more than once in a particle. 

Since pbest and nbest are two positions that include the personal best position and neighborhood 

best position of each particle, therefore the pbest and nbest encoding is similar to the particle’s 

position. Also in this paper we used start topology for nbest (gbest PSO). 

 In our proposed method, velocity of each particle is considered as an m × n matrix whose elements 

are real numbers in range [1, Vmax]. Formally if Vk is the velocity matrix of kth particle, then: 

 
},...,2,1{},,...2,1{,),(],1[ max njmijiVVkij       (5) 
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4.2. Updating Particles 

 

In our proposed method similar to classic PSO, at first the particle’s velocity is updated and then it 

is used for updating the particles’ position. Figure 2 shows the pseudo-code for updating velocity 

matrix for particle k. 

 

Figure 2. Velocity updating method. 

for each task j=1,2,…,n do 
 if kjkj pbestX   then 

 11)()( rcVV jXkjXk kjkj
 ; 

 11)()( rcVV jpbestkjpbestk kjkj
 ; 

 end 

 
 if kjkj nbestX   then 

 22)()( rcVV jXkjXk kjkj
 ; 

 22)()( rcVV jnbestkjnbestk kjkj
 ; 

 end 

end 

 

In this figure c1 and c2 are acceleration coefficients, r1 and r2 are random values in range [0, 1] 

sampled from a uniform distribution and Xk is the position of particle k. For updating particle’s 

position we use the updated velocity matrix and a heuristic, η which adds an explicit bias towards the 

most attractive solutions and is a problem-dependent function. In our proposed method for updating a 

particle’s position, for each task, the probability of its performing on various machines is calculated 

according to (6): 
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      (6) 

 

where pkij is the probability of performing task Tj on machine Mi in particle k, and ηkij represents a 

priori effectiveness of performing task Tj on machine Mi in particle k. Since in this paper we aim at 

minimizing makespan, ηkij is obtained using (7): 













kij
kij CT

1       (7) 

in which CTkij 
is the completion time of task Tj on machine Mi in particle k and can be obtained 

according to the workload of machine Mi plus required time for executing task Tj on machine Mi. 

After obtaining the pkij,  i = 1,2,…m, we can select a machine for task Tj in particle k according  

to (8). In this equation r0   [0, 1] is a user specified parameter and r is a random number in range (0,1) 

sampled from the uniform distribution:  
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4.3. Fitness Evaluation 

 

Since in this paper the makespan is used to evaluate the performance of scheduler, the Fitness value 

of each solution can be estimated using (9): 

makespan

1
 fitness 

      
 (9)  

 

Figure 3 shows the pseudo-code of our proposed method. 

 

Figure 3. Pseudo-code of the proposed method. 

Create and initialize swarm with P particles 
// X, pbest, nbest are n-dimensional and V is nm  matrix 
repeat 

for each particle k=1,…,P do 
  if )()( kk pbestfXf   then // f( ) is the fitness function(Equation (9)) 

   kk Xpbest  ; 

end 
  if )()( kk nbestfpbestf   then 

kk pbestnbest  ; 

end 
end 
for each particle k=1,…,P do 

   for each task j=1,2,…,n do 
    if kjkj pbestX   then 

     11)()( rcVV jXkjXk kjkj
 ; 

     11)()( rcVV jpbestkjpbestk kjkj
 ; 

    end 
     if kjkj nbestX   then 

     22)()( rcVV jXkjXk kjkj
 ; 

     22)()( rcVV jnbestkjnbestk kjkj
 ; 

     end 
end 
for each task j=1,2,…,n do 
 for each machine i=1,2,…,m do 
  calculate kijp using Equation (6); 

 end 
 select a machine for allocating to task jT using Equation (8) ;

 update the workload of the selected machine; 
end  

end 
until stopping condition is true; 
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5. Experimental Results 

 

In order to evaluate the performance of the proposed method, the approach was compared with a 

genetic algorithm [14] and continuous PSO [25] for task assignment problem in multiprocessor 

systems. The goal of scheduler in these methods is to minimize the makespan. These methods are 

implemented using VC++ and run on a Pentium IV 3.2 GHz PC. In order to optimize the performance 

of the proposed method and proposed PSO in [25] and GA in [14], fine tuning has been performed and 

best values for their parameters are selected. For the proposed method the following ranges of 

parameter values were tested: c1 and c2 = [1, 3], P = [10, 100], Vmax = [10, 100], β = [0.1, 4] and  

r0 = [0.1, 0.9]. Based on experimental results the proposed PSO algorithm performs best under the 

following settings: c1 = c2 = 2.0, P = 50, Vmax = 40, β = 1.0, r0 = 0.8. Also we used the benchmark that 

proposed in [14] for simulating the HC environment.  

The simulation model in [14] is based on expected time to compute (ETC) matrix for 512 tasks and 

16 machines. The instances of the benchmark are classified into 12 different types of ETC matrices 

according to the three following metrics: task heterogeneity, machine heterogeneity, and consistency. 

In ETC matrix, the amount of variance among the execution times of tasks for a given machine is 

defined as task heterogeneity. Machine heterogeneity represents the variation that is possible among 

the execution times for a given task across all the machines. Also an ETC matrix is said to be 

consistent whenever a machine Mi executes any task Tj faster than machine Mk; in this case, machine 

Mi executes all tasks faster than machine Mk. In contrast, inconsistent matrices characterize the 

situation where machine Mi may be faster than machine Mk for some tasks and slower for others. 

Partially-consistent matrices are inconsistent matrices that include a consistent sub-matrix of a 

predefined size [14]. Instances consist of 512 tasks and 16 machines and are labeled as u-x-yy-zz as 

follows: 

 u means uniform distribution used in generating the matrices. 

 x shows the type of inconsistency; c means consistent, i means inconsistent, and p means 

partially-consistent. 

 yy indicates the heterogeneity of the tasks; hi means high and lo means low. 

 zz represents the heterogeneity of the machines; hi means high and lo means low. 

In our experiment, the initial population for the compared methods is generated using two 

scenarios: (a) randomly generated particles from a uniform distribution, and (b) one particle using the 

min-min heuristic (that can achieve a very good reduction in makespan [6,14]) and the others are 

random solutions. 

The statistical results of over 50 independent runs are compared in Table 1 for scenario (a). In the 

table the first column indicates the instance name, the second, third, and fourth columns indicate the 

makespan achieved by GA [14], PSO [25] and our proposed method respectively. 

As shown in Table 1, the proposed PSO approach achieved best results in all instances. Also our 

method has a large amount of reduction in makespan in all instances; this is because of using heuristic 

η in the proposed method that minimizes makespan efficiently.  
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Table 1. Comparison of statistical results between GA [14], PSO[25] and the proposed 

method for scenario (a). 

Instance  GA[14] PSO[25] Proposed method 
u-c-hi-hi 21508486 13559696 10173411 
u-c-hi-lo 236653 223008 191878 
u-c-lo-hi 695320 463241 371355 
u-c-lo-lo 8021 7684 6379 
u-i-hi-hi 21032954 23114941 6642987 
u-i-hi-lo 245107 286339 149997 
u-i-lo-hi 693461 849702 228971 
u-i-lo-lo 8281 9597 4496 
u-p-hi-hi 21249982 22073358 8325090 
u-p-hi-lo 242258 266825 162601 
u-p-lo-hi 712203 772882 293335 
u-p-lo-lo 8233 8647 5213 

 

Table 2. Comparison of statistical results between the proposed method and others in 

scenario (b). 

Instance  Min-min GA[14] PSO[25] Proposed method 
u-c-hi-hi 8145395 7892199 7867899 7796844 
u-c-hi-lo 164490 161634 161437 160639 
u-c-lo-hi 279651 276489 274636 266747 
u-c-lo-lo 5468 5292 5322 5309 
u-i-hi-hi 3573987 3496209 3560537 3220459 
u-i-hi-lo 82936 81715 81915 80754 
u-i-lo-hi 113944 112703 113171 108597 
u-i-lo-lo 2734 2636 2680 2644 
u-p-hi-hi 4701249 4571336 4580666 4462357 
u-p-hi-lo 106322 104854 104987 103794 
u-p-lo-hi 157307 153970 154933 150375 
u-p-lo-lo 3599 3449 3473 3461 

 

Figure 4. Standard deviation in scenario (a). 
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Figure 5. Standard deviation in scenario (b). 
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Figure 6. Comparison of convergence time between different methods. 
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Table 2 shows the statistical results of over 50 independent runs in scenario (b). As shown in this 

table, the min-min heuristic can obtain a good reduction in makespan. In this scenario our method 

surpasses others in most instances, except those with low heterogeneity in tasks and machines.  

Figures 4 and 5 show the standard deviation of the compared methods for scenario (a) and scenario (b), 

respectively. As shown in Figure 4, the proposed method has the lowest standard deviation; this is 

because of the use of heuristic η in our method. Figure 5 also shows that the magnitude of standard 

deviation is decreased in scenario (b) thanks to the use of the min -min heuristic. In this scenario, the 

PSO approach proposed in [25] has lowest standard deviation in most instances and our method has 

admissible standard deviation too. Figure 6 shows a comparison of CPU times required to achieve 

results between compared methods. It is evident that the proposed method needs the lowest time for 

convergence in most cases, but by increasing the number of tasks and problem search space, the time 

for achieving results is increased in the proposed method rather than GA and in case of 1,024 tasks, the 

GA scheduler needs lowest time for convergence.  
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6. Conclusions 

 

To exploit the different capabilities of a suite of heterogeneous resources effectively and satisfy 

users with high expectations for their applications, a crucial problem that needs to be solved in the 

framework of HC is the scheduling problem. In this paper, we have combined particle swarm 

optimization approach with heuristic for scheduling tasks in distributed heterogeneous systems to 

minimize makespan. The performance of the proposed method was compared with GA and continuous 

PSO through carrying out exhaustive simulation tests and different settings. Experimental results show 

that our method surpasses other proposed techniques in most cases. In the future, we will formulate the 

proposed method for minimizing makespan and flowtime as a multi-objective problem. 
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