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Abstract

The bacterial foraging optimization (BFO) algorithm is
a nature and biologically inspired computing method. We
propose an alternative solution integrating bacterial forag-
ing optimization algorithm and Tabu Search (TS) algorithm
namely TS-BFO. We modify the original BFO via established
a self-control multi-length chemotactic step mechanism, and
introduce rao metric. We utilize it to solve motif discovery
problem and compare the experimental result with existing
famous DE/EDA algorithm which combines global informa-
tion extracted by estimation of distribution algorithm (EDA)
with differential information obtained by Differential evolu-
tion (DE) to search promising solutions. The experiments on
real data set selected from TRANSFAC and SCPD database
have predicted meaningful motif which demonstrated that
TS-BFO and DE/EDA are promising approaches for finding
motif and enrich the technique of motif discovery.

1. Introduction

With the increasing volume of biologic sequences avail-
able in public databases. Identification the transcription
factor binding sites (TFBSs), which are relative short, re-
curring, conservative patterns in the regulatory regions of
deoxyribonucleic acid (DNA) and are regard as having a
specified biological meaning to regulate the transcriptional
activity of genes (gene expression) [1], by computational
methods is a major challenge in bioinformatics.

In all the existing algorithms for motif discovery, they em-
ployed different search techniques to explore different fitness
landscape based on the corresponding fitness function. The
majority of these algorithms could be assort two categories:
stochastic searching algorithms based on position specific
weight matrix (PSWM) such as MEME [3], AlignACE [4],
and BioProspector [5]. The second category is combinatorial
search algorithms based on consensus sequence such as

Weeder [6], YMF [7], and Projection [8]. Regarded no one
approach is outstanding as the only best, and experiments
have shown that the overall performance of motif finding
algorithms is still quite low. Nevertheless, there seems to be
a slight advantage by combinatorial approaches [9].

In this paper, we propose an alternative solution integrat-
ing bacterial foraging optimization algorithm [10], which
is a natural foraging strategy technique, and tabu search
algorithm [11] [12] for motif discovery. We also compare
the experimental result with the DE/EDA algorithm and
other well-known methods.The rest of the paper is orga-
nized as follows. Section 2, we give the briefly reviews of
the objective function of our problem. Then the TS-BFO
algorithm with self-control multi-length chemotactic steps
and its implementation details are presented in Section 3.
The simple introduce of DE/EDA in Section 4. In Section
5,The experimental results presented and finally we drew the
conclusions in Section 5.

2. Objective Function

For the given H sequences, each length is Q. For
the purpose of explore motifs we use a total fitness score
function, our approaching which part of it as the sequence
alignment FMGA [13] did, we also did some modification
to adapt to our TS-BFO algorithm and describe it below.
Therefore, we consider the fitness score of one single
sequence, defined as follows:

FS(Sm, Pn)

= max{
w∑

i=1

match(Smji, Pni) + L/w}/w
(1)

Where

match(Smji, Pni) =
{

1 if Smji = Pni

0 if Smji ̸= Pni
(2)



m is the index of sequences, i is the position within the
motif, n is the index of motif patterns, w is the length
of motif pattern, j is number of matched regions in the
sequence. And L is the value of the number of all the
continuous mismatched segments minus one, it reflect the
multiple sequence alignment phenomena biologically [14].
To find the maximum mentioned above, we resort to a slide
window which moves from the beginning of the sequence
to the end of it.

The total fitness score function of an individual is the
summation of fitness score function for all sequences. We
establish the total fitness score function as follows.

J = TFS(S, Pn) =
H∑

m=1

FS(Sm, Pn) (3)

3. The TS-BFO Algorithm For Motif Discovery

3.1. The Original BFO Algorithm

Bacterial Foraging Optimization (BFO) algorithm has
been applied to model the E. coli bacteria foraging behavior
for solving optimization problems [10]. It has some remark-
able accomplishment in applied to some Control Systems
(such as PID controller, harmonic estimation, etc) [15] [16]
[17] [18]. In our method one candidate motif regard as one
bacteria to undergo the evolution. The foraging action of
E. coli experience four series of steps namely, chemotaxis,
swarming, reproduction, and elimination and dispersal as
presented below.

3.1.1. chemotaxis. The movement brought about by a
mechanism of creating rotational forces to spin the flagellum
in either direction is named as biological motor. An E. coli
bacterium can move in two different ways, it can run (when
the flagella rotate clockwise) or it can tumble (when the
flagella rotate counterclockwise), and it alternates between
these two modes of operation its entire lifetime in order to
search for nutrients.

3.1.2. swarming. When one bacteria reaches a better
location, it attract other bacteria so that they converge in
that location. When one bacteria moves to a relative worse
place it repel other bacteria. As a result the combined cell-
to-cell attraction and repelling effects makes them swarm
together as concentric patterns towards nutrients area.

3.1.3. reproduction. The least healthy bacteria die and the
other healthiest bacteria each split into two bacteria, which
are placed in the same location. This makes the population
of bacteria constant.

3.1.4. elimination and dispersal. It is possible that in the
local environment a gradual or sudden change take place due
to consumption of nutrients or some other influence. This
may cause the elimination of a set of bacteria and/or disperse
them to a new environment. This reduces the chances of
convergence at local optima location.

3.2. The Tabu search

Tabu search (TS) method [11] [12] is a modern meta-
heuristic optimization technology. The crucial part of this
algorithm is to make use of a ”memory” to creating one (or
more) tabu list, which contain the historical information of
solutions that have been obtained lately. The list reserve a
set of solutions as tabu to avoid visited repeatedly and guide
the search orientation. The use of tabu search on the large-
scale non-linear problem has proved it can find the global
solution very effectively.

To the motif discovery problem, the tabu list in our
method is composed of three items:

1. All the candidate motifs themselves.
2. Each candidate motif’s fitness value.
3. The un-update iteration time that each motif has been

suffered.

In the search procedure, check and update the tabu list
is a pivotal step, in view of finding motif based on the BFO
algorithm, we summarize our visit tabu list mechanism as
follow:

step1: When the new individual generates in swarming
step, if there is no duplicate in list, then insert it to the
list (update tabu list successfully), else, update tabu
list unsuccessful.

step2: When the new individual generates in
reproduction or in elimination and dispersal step, if
it can satisfy the aspiration criterion (better than the
average fitness value of all the individuals), and there is
no duplicate in list, then insert it to the list(successful),
else, failed.

step3: When some individuals have not updated for K
consecutive iterations and its fitness below the average
(its fitness rank at the posterior part of the population),
delete it and create a new one, then go to step 1. If its
fitness above the average, shorten its Chemotactic step
length.

step4: Sort the individuals by fitness in increasing
order, keep the population constant, and update each
individual’s K value.



3.3. The Detailed TS-BFO Algorithm

We summarize the general principles of TS-BFO algo-
rithm in detail as follows:

1) Initialize:j = k = l = 0
2) Elimination-dispersal loop:l = l + 1
3) Reproduction loop:k = k + 1
4) Chemotaxis loop:j = j + 1

a) For i = 1, 2, . . . , S, take a chemotactic step for
bacterium as follows.

b) Compute J(i, j, k, l). Let

J(i, j, k, l) = J(i, j, k, l)

+ Jcc(θi(j, k, l), P (j, k, l))
(4)

c) Let Jlast = J(i, j, k, l) to save this value since we
may find a better cost via a run.

d) Tumble: Generate a random vector ∆(i) ∈ ℜp with
each element ∆m(i),m = 1, 2, . . . , p, a random
number on [1,1].

e) Move: Let

θi(j + 1,k, l) = θi(j, k, l)

+ C(i)
∆(i)√

∆T (i)∆(i)
(5)

This results in a step of size C(i) in the direction
of the tumble for bacterium i.

f) Compute J(i, j + 1, k, l), and then let

J(i, j + 1, k, l) = J(i, j + 1, k, l)

+ Jcc(θi(j + 1, k, l), P (j + 1, k, l))
(6)

g) Swim:
i.) Let m = 0 (counter for swim length);

ii.) While m < Ns (if have not swam enough
distance)

F Let m = m + 1
F If J(i, j + 1, k, l) > Jlast (if doing better)

and update tabu list successfully, let Jlast =
J(i, j + 1, k, l) and let

θi(j + 1, k, l) = θi(j + 1, k, l)

+ C(i)
∆(i)√

∆T (i)∆(i)
(7)

and use this θi(j+1, k, l) to compute the new
J(i, j + 1, k, l) as we did in f).

F If update tabu list unsuccessfully, go to d).
F If J(i, j + 1, k, l) < Jlast and haven’t up-

date for consecutive K(i) times, let K(i) =
K(i) + 1.

h) Go to next bacterium (i + 1) if i ̸= S (i.e., go to
b) to process the next bacterium).

5) If j < Nc, go to step 4. In this case, continue
chemotaxis, since the life of the bacteria is not over.

6) Reproduction:

F Let t = 0 (counter for Reproduce time);
F while (t < Rs) (if have not Reproduce enough

children)

À Choose 2 individuals whose fitness above the
average as parents, executing the random one
point crossover based on elitist selection for
reproduction.

Á Update the tabu list. If failed, go to À. Else, let
t = t + 1.

7) If k < Nre, go to step 3. In this case, we have not
reached the number of specified reproduction steps, so
we start the next generation in the chemotactic loop.

8) Elimination-dispersal: For i = 1, 2, . . . , S, with prob-
ability Ped, eliminate and disperse each bacterium. To
do this, if you eliminate a bacterium, simply disperse
one to a random location on the optimization domain,
and Update the tabu list.

9) If l < Ned, then go to step 2; otherwise end.

In formula (4), where

Jcc(θ, P (j, k, l)) =
S∑

i=1

J i
cc(θ, θ

i(j, k, l))

=
S∑

i=1

[−dattexp(−watt

p∑
m=1

(θm − θi
m)2)]

=
S∑

i=1

[−hrepexp(−wrep

p∑
m=1

(θm − θi
m)2)]

(8)

Denote the combined cell-to-cell attraction and repelling
effects, dynamically deforms the search landscape as the
cells move to represent the desire to swarm, where θ =
[θ1, . . . , θp]T is a point on the optimization space and θi

m is
the mth component of the ith bacterium position.

In this paper we introduced the Rao metric to state the
combined cell-to-cell attraction and repelling effects (Jcc).
The Rao metric has a statistical meaning, it is, one of
the similarity measure, the distance metric for comparing
parameter vectors [19][20], we just use the simple form
substituted for

∑p
m=1(θm − θi

m)2 which refer to Jcc, in the
interest of understand the relationship between one single
motif and the whole population. The Rao metric defined as
follows.

Rao =
x

w
(9)

Where w still represent the length of a motif, x is the
amount of all the matched positions at a alignment time.



We Then modify Jcc to Fcc as follow.

Fcc(θ,P (j, k, l)) =
S∑

i=1

F i
cc(θ, θ

i(j, k, l))

=
S∑

i=1

[−dattexp(−wattRaoi(j, k, l))]

=
S∑

i=1

[−hrepexp(−wrepRaoi(j, k, l))]

(10)

where Fcc function is time varying in that if many bacteria
come close together there will be a high amount of attractant
and hence an increasing likelihood that other bacteria will
move toward the group.

Apart from that datt, watt, hrep and wrep indicate that the
depth of the attractant released, the width of the attractant
signal, the height of the repellant effect, and the width of
the repellant by the cell respectively.

3.4. The Self-control Multi-length Chemotactic
Steps

In the original BFO (as in other search techniques),
we have to face the problem that keep balance between
the exploration and the exploitation, that’s where the shoe
pinches. Our study will focus on the concernful chemotac-
tic step. There have many achievements reached by other
scientists. Das [21] have proved that at some point of time
the constant step-size violates the conditions of asymptotic
stability and the bacterium starts oscillating around the
optimum, instead of converging to it. Datta and Misra [22]
made the chemotaxis adaptive using principle of adaptive
delta modulation. Chen [23] established an”individual run-
length unit”with 2 Criterions, and so on.

We present our self-control multi-length chemotactic step
mechanism as follow:

1. Initialize large run-length for each bacteria at the very
beginning.

2. If the bacteria’s current fitness is un-update for K
consecutive iterations, then abate its run-length (avoid
reaching zero).

3. With the run-length minish gradually, trying relative
large run-length at least one time in each iterations.

We brought about this self-control multi-length chemo-
tactic step mechanism for the sake of increase the diversity
of the population and avoid being in the local extremum
trouble.

4. The DE/EDA Algorithm

The DE/DEA algorithm is an improved DE algorithm
based on the estimation of distribution algorithm. In
DE/EDA, new promising solution is created by DE/EDA

offspring generation scheme, in which local information
obtained by the DE mutation and global information ex-
tracted from a population of solutions by the EDA modeling
are incorporated together. The detailed information about
DE/DEA you can see [24].

5. Experimental Result

We carried out some experiments demonstrate the fea-
sibility of TS-BFO and DE/DEA, and compare them with
known motifs those found by these two methods and by
other famous approaches, the data sets for the discovery of
transcription factor binding sites were selected from public
database.

The 7 denotes the motif that TS-BFO can predict but
DE/EDA can’t, whereas The X denotes the motif that
DE/EDA can predict but TS-BFO can’t. N/A means there is
no other method we can find which discover the same motif.
Besides, we don’t list all the output we had gotten, and only
present some of them to illuminate our algorithm.

The first set contains 7 promoter sequences of saccha-
romyces cerevisiae (yeast), which were collected from SCPD
database. We give the results of our TS-BFO algorithm
predicted and their rank in output in Table 1 and the result
get from DE/DEA algorithm in Table 2. we also Compare
the results with known binding sites. In TS-BFO, Nc = 4,
Nre = 4, Ned = 4, and Ns = 5 respectively.

Table 1. Comparison of the known binding sites of S.
cerevisiae and the prediction results given by TS-BFO.

Family Known motifs (motif length) TS-BFO (rank)

REB1 TTACCCG (7) TTACCCG (1)

GATA CTTATC (6)7 CTTATC (1)

TCCGTGGA (8) TCCGTGGA (1)
PDR TTCCGCGGAA (10) TTCCGCGGAA (2)

TCCGCGGA (8) TCCGCGGA (3)

MCB ACGCGT (6) ACGCGT (2)

GCR1 CTTCC (5) CTTCC (1)

MATalpha2 CATGTAATT (9)7 CATGTAATT (1)

RME1 GAACCTCAA (9) GTACCTCAA (1)

The performance of TS-BFO and DE/EDA from Table 1
and Table 2 illuminated that they can predict meaningful mo-



Table 2. Comparison of the known binding sites of
S.cerevisiae and the prediction results given by

DE/EDA.

Family Known motifs (motif length) DE/EDA (fitness)

REB1 TTACCCG (7) TTACCCG (0.89)
CGGGTTA (7)X CGTGTTA (0.87)

GATA GATAAC (6) GATAAC (0.93)

TCCGTGGA (8) TCCGTGGA (0.93)
PDR TTCCGCGGAA (10) TTCCGCGGAA (0.91)

TCCGCGGA (8) TCCGCGGA (0.91)

MCB ACGCGT (6) ACGCGT (0.95)

GCR1 CTTCC (5) CTTCC (1.00)

MATalpha2 AATTACATG (9)X AATTACATG (0.86)

RME1 GAACCTCAA (9) GTACCTCAA (1.00)
GCTGAACCT (9)X GCTGAACCT (0.94)

tif, therefore they are promising methods for motif discovery.
With the length of the motif become longer the difficulty to
discover also augment, so the fitness is descending as the
motif length largen. Next, we exhibit their discrimination
by test on different dataset.

The secondary hm03r sequence data set contains 10 se-
quences of 1500bps each which is a larger set comparatively
and was collected from TRANSFAC database [25]. Table
3 and 4 shows the result, the lengths of the conservative
motif set with 6, 7, 10 and 13, and compare the results with
AlignACE, MEME, and other known methods [9], Other
key parameter Choose Nc = 10, Nre = 5, Ned = 5, and
Ns = 20 for our TS-BFO.

Thirdly, the yst04r sequence data set which from
TRANSFAC database contains 7 sequences of 1000bps each.
The predicted motif patterns are shown in Table 3. we choose
Nc = 5, Nre = 4, Ned = 4, and Ns = 5 for our TS-BFO.

From table 3, 4 5, 6 we observed that there some motifs
only one of the algorithm can predict. It means that different
search strategy explore different search space. In fact, most
of the results from these two methods are the same, because
they based on the same objective function. Hence, we can
choose different approach to deal with different datasets, and
the technique of motif discovery enriched by the TS-BFO
and the DE/EDA.

Table 3. Comparisons of TS-BFO predicted motifs with
different methods for hm03r.

Length TSBFOMD (rank) Other methods

TCTGTG (1)7 TCTGTC -MotifSampler
6 TTCCCT (2) TTCCCT -QuickScore

AGAGAA (1) AGGGAA -QuickScore

7 AGACAGA (1) AGACAGA -MotifSampler

10 TCTCTGTCCC (3) TGACTCTGTCCC -MEME3
GACACAGGGA (1)7 GACAAAGGGAA -MEME

13 AGCAAACAAAATA (1) TGAGCAAACAAAATAAATAC
-MEME

Table 4. Comparisons of DE/EDA predicted motifs with
different methods for hm03r.

Length DE/EDA (fitness) Other methods

TCTGAA (1.00)X N/A
6 AAGCTT (0.97) GAAGCTTTCTT -MITRA

7 CAGGCTG (0.93)X CATACAGGCTGGTCTGCTG
-GLAM

8 TCTGAAAT (0.91)X N/A
AGAGAAAG (0.93) AAAGAGAAAG

-SeSiMCMC
AATATTTA (0.91) AAATATTTA -Improbizer
AGAGAAAG (0.93) AAAGAGAAAG

-SeSiMCMC

9 AGACAAAGG (0.90)X AGTGCAGACAAAGGGAAA
-MEME

ACACAGGGA (0.88) TGCAGACAAAGGGAATA
-MEME

10 TCTCTGTCCC (0.87) TGACTCTGTCCC -MEME3
AGGGAAAACA (0.85)X TGTGGAGAAAACA

-AlignACE

13 GAGCAAACAAAAT (0.83) TGAGCAAACAAAATAA
-MEME

6. Conclusion

The results presented above shows that TS-BFO and
DE/EDA are promising approach for motif discovery. The
performance of them illuminated that they can predict mean-
ingful motif.



Table 5. Comparisons of the predicted motifs with
different methods for yst04r by TS-BFO.

length TSBFOMD(rank) Other methods

6 GATTCC(1) GATTCCTATA -MITRA

7 TTCTGGC(5) TTTCTGGC -GLAM

8 GCTTCCAC(2) GCTTCCACTA -MITRA
CGGGATTCCTC -MEME

GGATTCCT(4)7 CGGGATTCCT -AlignACE
CGGGATTCCTCTA -Consensus

9 GCTTCCACT(4) CGAGCTTCCACTA -MEME3

10 TTTTCTGGCA(1) TTTTCTGGCA -Weeder
CTGGCATCCA(4) CTGGCATCCA -AlignACE

CTGGCATCCAGT -MotifSampler

Table 6. Comparisons of the predicted motifs with
different methods for yst04r by DE/EDA.

length DE/EDA (fitness) Other methods

6 GATTCC (0.98) GATTCCTATA -MITRA
TCCAGA (0.93)X TCCAGAAA -GLAM

7 ACTTGCA (0.96) ACTTGCA
-oligo/dyad-analysis

8 GCTTCCAC (0.910714) GCTTCCACTA -MITRA
CGGGATTCCTC -MEME

9 TTTCTGGCA (0.91) TTTTCTGGCA -Weeder

10 CTGGCATCCA (0.86) CTGGCATCCA -AlignACE
TTTTCTGGCA (0.86) TTTTCTGGCA -Weeder

11 TCTGGCATCCA (0.83) CTGGCATCCA -AlignACE

Thus, we sum up TS-BFO’s 4 advantages. First, we es-
tablished a self-control multi-length chemotactic step mech-
anism which could extend the search space, avoid local
extremum and speed up the constringency. Second, we
introduced The Rao metric to exhibit swarm together effect
in order to achieve the finding motif aim which based on
BFO algorithm, and it works. Third, using the one point
crossover based on elitist selection to conquer the trouble
of local extremum which arises in the original BFO with

higher probability. Finally and the one of the most important
point, integrating Tabu Search algorithm could abstain the
duplicate individuals generates in each step, guide the search
orientation, and find the global solution.

As we known that none of the computing methods could
discover all the motifs concealed within the upstream se-
quences, however, we will try our best to improve the
algorithm to discover more than the others. An elegant
method to automatic ascertain the length of the motif and
a better objective function which are still the problems we
should take into account. We also employed the algorithm
to wider range of data sets so that reveal its advantages and
disadvantages.
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